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Abstract

Evolutionary Models of the Ultimatum Game
M. van Schoor

Department of Economics,
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.
Dissertation: PhD (Economics)

March 2025

This dissertation uses evolutionary models to improve our understanding of
the structure of the ultimatum game and to provide and critically interpret ex‑
planations from evolutionary models for empirical results.

Existing evolutionarymodels haveestablished that stable evolutionary equi‑
libria exist in which proposers make offers of relatively equal bargaining out‑
comes, while responders reject low but positive offers. These results are at
odds with conventional game theoretic predictions, but consistent in some re‑
spectswith observed human behaviour in experimental studies. The evolution‑
ary dynamics leading to this result is not well understood for the full ultima‑
tum game, as comprehensive analysis of dynamics have only been provided for
a simpliϐied minigame version of the game. Moreover, it has not been estab‑
lished that a minigame can constitute an adequate approximation for the full
game. To address these deϐiciencies, conditional frequency dynamic analysis is
used to formally linkminigames to the full game, allowing the former to explain
key results in the latter, particularly the existence and stability of non‑subgame‑
perfect equilibria.

The relevance of these results for experimental data is addressed next. Evo‑
lutionary models can be interpreted as frameworks for examining the cultural
evolution of behavioural norms andpreferences. This requires constructingmi‑
crofoundations for the aggregate dynamics model that describes the stochastic
process of individual‑level strategy revision. It is shown that certain assump‑
tions made in the aggregate‑level model, which are necessary to predict rel‑
atively equal divisions, lead to unreasonable discrepancies in learning rates
between individual agents in the proposer and responder populations. Fur‑
thermore, the results are not robust to stochastic disturbances in ϐinite pop‑
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ABSTRACT iv

ulations, limiting their applicability to empirical data and suggesting that ad‑
ditional model features are required to account for experimental ϐindings of
relatively equal divisions and rejections of low offers.

The ϐinal research question investigated is whether allowing responders
to build reputations can create the necessary incentives for higher offers and
higher acceptance thresholds. However, a reputation for rejecting low offers
can only be established if there is a sufϐicient frequency of low offers to re‑
ject, thus information must be treated as endogenous. A general endogenous‑
information framework is developed to calculate endogenous information equi‑
libria in two‑player population games, where the available information is con‑
sistent with the pattern of action proϐiles induced by it. The framework is used
to explore different types of reputations, including negative reputations that
harm responders when observed and positive reputations that beneϐit them
when observed. It is shown that the different reputation mechanisms are com‑
plementary and can lead to relatively equal divisions and rejections of low of‑
fers, consistent with observed behaviour in experimental studies. These re‑
putation‑based models also offer a plausible explanation for the evolution of
relatively equal divisions in societies where such norms were initially absent –
something that the baseline and earlier reputation‑basedmodels fail to explain.
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Chapter 1

Introduction

During the 1970s and early 1980s, there were substantial interest and steady
progress in the strategic modelling of bargaining, with some of the most im‑
portant theoretical advances, including the alternating‑offers models of Ståhl
(1972) and Rubinstein (1982), originating in this period. At the same time,
there was (and still remains today) a debate about the adequacy of standard
methodological assumptions used in game theory to explain and predict real
human behaviour, which lead to calls for empirical testing (Güth and Kocher,
2014, p. 397). The complexities of general bargaining theory, combined with
the challenge of developing sound experimental methods, which were new in
economics at the time, eventually led Werner Güth and his students (1982) to
focus on one of the simplest possible bargaining interactions, which Harsanyi
(1961) had earlier called the ultimatum game (UG).

Given a ϐixed amount of money to divide, one player makes a take‑it‑or‑
leave‑it offer and a second player gives a simple accept/reject response. The
payoffs are the ϐirst player’s offered division, if the second player agreed, or
zero for both players, if the second player refused. Apart from being simple,
the UG is useful in applications as it captures the strategic essence of situations
where one player can make a ϐirm commitment to a speciϐic offer (Harsanyi,
1961) or where institutions enable one party in a bargaining interaction, such
as an employer (Mago et al., 2024, p. 529) or a landlord (Young andBurke, 2001,
p. 566), to propose terms of an agreement unilaterally.

Figure 1.1 represents a simpliϐied minigame version that illustrates the es‑
sential strategic features of the game. In the minigame, only two possible pro‑
posals are allowed, (50, 50) (“Fair”) and (99, 1) (“Unfair”). However, regardless
of which offer is made, the responder’s best response is always to accept, since
rejecting results in the lowest payoff: nothing. Applying backwards induction
(indicated by thick lines) results in the proposer choosing the unfair offer. The
game therefore has a unique subgame‑perfect Nash equilibrium (SPNE), which
allocates all the surplus to the proposer. Similarly in the full game, in which the
proposer has many different possible offers, only the one allocating the max‑
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Proposer

ResponderResponder

Fair offer

Accept Accept

50,50 99,1
SPNENE

0,0 0,0

Reject Reject

Unfair offer

Figure 1.1: The ultimatumminigame (extensive form)

imum surplus to himself while still leaving a positive payoff to the responder
leads to a SPNE. Note, however, that if the responder commits to a strategy of
rejecting unfair offers, the proposer’s best response is to make a fair offer, re‑
sulting in a second, imperfect, Nash equilibrium (NE) indicated in ϐigure 1.1. In
the full game, a commitment by the responder to reject offers lower than any
speciϐied amountmakes an offer of such an amount a best response for the pro‑
poser, hence any division of the surplus is a NE outcome. These imperfect equi‑
libria are conventionally regarded as non‑credible, because if a low offer were
actuallymade, the responderwould have a clear incentive to accept rather than
reject.

In experimental work, the theoretical game’s payoffs are made concrete
money amounts that are paid out to experimental subjects upon conclusion of
the experiment. If the players’ preferences are completely given by the current
game’s monetary payoffs, the only rational behaviour is given by the game’s
unique SPNE which predicts that proposers would make the lowest possible
positive offers and responders would accept any positive amounts offered. But
Güth et al. (1982)’s initial experimental study found results that were at odds
with these “extreme” predictions. Numerous subsequent experimental stud‑
ies have conϐirmed their results: human proposers typically offer between 30
and 50 per cent of the total money amount and responders often reject offers
below 20 per cent (Camerer and Thaler, 1995, p. 210, Oosterbeek et al., 2004,
Güth and Kocher, 2014, p. 398).

The stark discrepancy between theory and empirical results prompted nu‑
merous compelling researchquestions, generating considerable interest among
scholars. Consequently, a steady stream of research appeared that sought to do
further experimental tests under varying conditions, on the one hand, and to
provide explanations for the results, on the other. More than four decades later,
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academic interest in the ultimatum game shows no signs of slowing down.1
From the outset, the need for empirical testing of bargaining theory sprung

from doubts about two key assumptions made in conventional theory, namely
whether people are perfectly rational utility calculators and whether people
have narrowly selϐish preferences (Güth and Kocher, 2014, p. 397). Over the
years, interest in the latter question dominated the former, and the ultimatum
game became a standard tool used by researchers interested in broad‑ranging
questions of cooperation, fairness, social norms, altruism, egalitarianism, the
role of emotions in decision‑making and brain research. The dominant expla‑
nation for experimental results in the standard ultimatum game is that respon‑
ders experience positive utility from rejecting what they regard as inferior or
unfair offers (Fehr and Schmidt, 2006, p. 630), and proposers are motivated by
the need to avoid rejection and possibly also by other‑regarding preferences
including altruism, egalitarianism or social norms (Cooper and Kagel, 2016).
In these endeavours, experimental researchers have largely taken rational be‑
haviour for granted,2 particularly in a game as simple as the UG (e.g. Camerer
and Thaler, 1995, p. 210, Fehr and Schmidt, 2006, p. 617,628).

Nevertheless, the question of rationality has not been forgotten. Learning
and evolution remain the most compelling justiϐications for the assumption of
rational behaviour in economics and game theory (Selten, 1990;Mailath, 1998).
Real people do not behave like sophisticated utility calculators when facing
unfamiliar decision problems – instead, they combine limited reasoning with
heuristics, rules of thumb, mimicry and social norms. Evolutionary models, in
which a population of agents using different strategies evolve in such away that
more successful strategies’ frequencies increase relative to less successful ones,
are often used as a convenient and general proxy for bounded rationality and
learning (Mailath, 1998, p. 1355). Thus, evolutionarymodels may be able to ex‑
plain what happens when players play the game repeatedly and adapt their be‑
haviour over time in response to their experience of good and bad outcomes. In
addition, evolutionarymodels can provide explanations for how the norms and
preferences exhibited by laboratory subjectsmayhave originated. Conventions
that arose in speciϐic contexts, e.g. sharecropping agreements, acquire salience
and become difϐicult to dislodge, and function to coordinate economic relations
and reduce transaction costs and conϐlicts (Young and Burke, 2001; Burke and
Young, 2011). More generally, these evolutionary processes are thought to have
occurred in the past within a broader socioeconomic context, where people en‑

1Güth and Kocher (2014, p. 396) mention that a Google Scholar search for “ultimatum bar‑
gaining” delivered more than 26 500 results in 2013. Today, the same search gives “about
51 100” results, while “ultimatum game” gives “about 104 000”. Limiting results (on the latter)
to publications since 2020 gives “about 16 800” results. Most of the results are experimental
studies.

2Some have attempted to test for it empirically, e.g. Andreoni and Miller (2002), with posi‑
tive results.
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gaged in a variety of daily interactions (Gale et al., 1995, p. 70, Mailath, 1998,
p. 1350, Güth and Napel, 2006, p. 1038, Skyrms, 2014). In thesemodels, ϐitness
is typically equated to material payoffs, so the models explain the evolution of
behaviour without any speciϐic assumptions of social preferences. If behaviour
emerges that is compatible with social preferences, however, the outcome of
the evolutionary model may be interpreted as reϐlecting such preferences.3

The research in this dissertation is aimed at using evolutionary models to
advance understanding of the structure of the ultimatum game and to provide
and critically interpret explanations from evolutionarymodels for empirical re‑
sults. Evolution is used in the twosensesmentionedabove, ϐirstly as ametaphor
for interactive learning as players gain experience and secondly as an ultimate
explanation for the possible origins of ingrained behavioural norms and pref‑
erences.

In this introductory chapter, I will provide some background, including a
brief review of literature that uses evolutionarymodels to explain behaviour in
the ultimatum game, with a speciϐic focus on the model by Gale, Binmore, and
Samuelson (1995) (henceforth GBS) that is used as the basis for the research in
chapters 2 and 3 of this dissertation. This will be followed by summaries of the
speciϐic issues investigated in the respective chapters and their main ϐindings,
highlighting contributions and advances made. I conclude with a brief discus‑
sion of methodology.

1.1 Evolutionary models of the ultimatum game
Applications of evolutionary modelling to the UG roughly mirrors the experi‑
ence of evolutionary game theory in economics, with a period of intense initial
activity in the the 1990s, afterwhich speciϐic interest subsided, though the tech‑
niques had by then entered mainstream thinking and new studies continued
to appear with some regularity. Many recent contributions have an interdis‑
ciplinary ϐlavour. Two surveys on evolutionary modelling of the UG have been
published (Debove et al., 2016; Akdeniz and VanVeelen, 2023), so the following
literature review will be brief and focused on speciϐic models of interest.

Many of the published articles seek to “explain fairness”, i.e. relatively equal
outcomes, in the ultimatum game, using some kind of treatment or device in‑
cluded in an evolutionary model that causes equal outcomes to result. In con‑
trast, some of the early models were standard evolutionary models in which
agents play the UG without any embellishments. I refer to these as baseline
models as they are a useful benchmark for comparison to other models and
they are also a good starting point for exploring other factors. They are also

3Similarly, rationality is not assumed in evolutionary models, but there are strong links be‑
tween evolutionary equilibria and strategic equilibria, so outcomes may be assessed as reϐlect‑
ing rational behaviour.
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the logical starting place when seeking to explain baseline empirical results in
standard UG experiments, where no treatment is applied. The fact that there is
no “treatment” effect in these evolutionary models does not mean they do not
have their own remarkable results. In particular, they do not necessarily lead
to the UG’s SPNE.

1.1.1 Baseline models
The ϐirst baseline model, the GBS model, will be a primary focus of this dis‑
sertation, thus deserving of a more thorough review here. The authors apply
standard replicator dynamics to twopopulations, proposers and responders re‑
spectively. A low rate of mutation is added, reϐlecting realistic mistakes and/or
innovations. InBinmore and Samuelson (1994) a relatedmodelwith a different
version of the replicator dynamics, the so‑called discrete or “adjusted” replica‑
tor dynamics, gives similar results. Differences between the two versions and
how theymay be interpreted are discussed in chapter 3. Mutation ensures that
there is always a small positive frequency of each possible strategy. One would
expect that the presence of at least a small frequency of low offers would create
an incentive for responders to learn to accept all offers, so it is surprising to ϐind
that the model’s ϐinal rest points in many cases do not reϐlect the SPNE where
responders have learned to accept all positive offers.

Instead, proposers offer a substantial share of the total amount, such as 7 or
9 out of 40, and a substantial share of responders reject lower amounts. This
result, i.e. evolutionary stablebut imperfect equilibria, hingesonparameter val‑
ues, and tends to appear when responders have relatively high mutation rates
and proposers relatively high selection rates. Proposers then quickly learn to
make acceptable offers, i.e. not too low, given some distribution of responder
strategies. Consequently, responders have a very limited incentive to learn to
accept lower positive offers, so strategies that reject lower offers can persist
with the help of mutation. Even an arbitrarily small rate of respondermutation
can achieve this result (depending on the other parameters), so it should not
be thought that mutation forcefully “pushes” responders to reject low offers.
Instead, the result is better explained by the very small size of the payoff ad‑
vantage of the optimal SPNE strategy (accepting all positive offers) over other
responder strategies.

In a series ofmodels based on a single populationwith different types ofmu‑
tation and strategy spaces, Harms (1997) conϐirms that the result that weakly
dominated strategies and more equal bargains survive holds in many cases.
A well‑known paper by Roth and Erev (1995) uses a reinforcement learning
model to derive broadly similar results, which are also shown to be relevant to
experimental results that indicate learning taking place in a similar fashion as
in the model. The similarity in these results to GBS supports GBS’s (p. 83) as‑
sessment that similar effects should occur under a wide range of evolutionary
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dynamics speciϐications. Explaining, interpreting and critically assessing the
relevance of this result, which I call the “GBS result”, form a large part of this
dissertation’s objectives, so the speciϐic aspects I investigate are discussed in
more detail in the chapter summaries below.

Baseline models may provide partial explanations for interactive learning
taking place as players gain experience over multiple rounds of play (with dif‑
ferent partners to avoid repeated‑game effects). But it is clear that there are
many things that these models cannot explain on their own, so they are not a
substitute for other‑regarding preference models when conducting empirical
work (Fehr and Schmidt, 2006, p. 628). However, evolutionary models may
also be able to offer explanations for social norms, preferences and behaviour
that experimental subjects bring to the laboratory.

Such explanations rely on the notion that the interactions that people have
engaged in in their everyday lives do not resemble the once‑off interactions in
an experimental laboratory (Baumard and Sperber, 2010). Everyday interac‑
tions may allow for repeated interactions and relationships, reputations, dif‑
ferent outside options, different bargaining rules, considerations of social sta‑
tus and many other factors that make them different from once‑off ultimatum
games. If preferences and behavioural norms were formed in complex real‑
world socioeconomic environments, there is an impetus to study evolution in
such settings. This is a daunting task, but it is sensible to focus attention on
interactions that are at least superϐicially similar to the one‑shot UG, so that a
plausible case can bemade that a normdevelopedwhile playing the former can
be applicable to the latter.

1.1.2 Information, reputation and commitment
It is plausible that humans have developed a strong and ingrained concern for
protecting their reputations, and that the behaviour of a responderwho rejects
a low offer could be interpreted as serving this purpose. A person with a rep‑
utation for accepting low offers will tend to receive more low offers. There is
strong experimental evidence that when the possibility of developing a reputa‑
tion is made explicit, responders raise their acceptance thresholds (Fehr and
Fischbacher, 2003; Poulsen and Tan, 2007), as this directly leads to getting
higher offers fromproposerswhen the proposers are informed about their past
behaviour. It may be hard to completely switch off the inclination to reject low
offers if it has becomedeeply ingrained, even in experimentswhere the framing
is of anonymous one‑shot interactions.

Nowak et al. (2000) present two evolutionary models in which responders
are able to build reputations for toughness. Proposer lower their offers to a re‑
sponder if they have information that the responder has accepted low offers in
the past. This can be called a negative reputation model, as the reputation has
a negative effect on the agent to which it is attached. Responders, now having
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a clear incentive to avoid negative reputations, are incentivized to rather re‑
ject low offers, which in turn gives proposers an incentive to make high offers
rather than unconditional low offers. This simple mechanism provides a possi‑
ble explanation for observed behaviour when experimental subjects engage in
ultimatum bargaining interactions.

The notion of reputation is linked to the notion of commitment, which Akd‑
eniz and Van Veelen (2023) argue is a more general concept that might explain
fair outcomes in the UG. The key to either approach is that the proposer must
have a way of obtaining information about the likely reaction of the responder
to possible offers. Several other papers featuring evolutionary models of the
UG with reputation mechanisms have been published (Poulsen, 2007; Debove
et al., 2016; Zhang et al., 2023; Akdeniz and Van Veelen, 2023), but a number
of important questions remain unexplored. Chapter 4, which is summarized
below, explores a general approach to reputations that considers not only the
effects of various kinds of reputations in the UG but also the feasibility of build‑
ing them.

1.2 Rationale
The GBS model and result forms the basis for a large part of the research in
this dissertation. There are several reasons why the GBS model is particularly
interesting and important.4 Firstly, the paperwas an important advance in evo‑
lutionary game theory, where it has had a considerable impact, particularly in
understanding the role of noise (mutation) and the stability of imperfect equi‑
libria. The result is counterintuitive because intuition suggests that imperfect
rest points in a noisy environment should be unstable, yet GBS show that they
can be asymptotically stable. Secondly, the GBS model suggests that we should
not expect to see SPNE result in experimental data, which is indeed the case.
Even though the UG model is not able to explain every aspect of experimental
data correctly, this observation remains important. Thirdly, experimental re‑
search speciϐically focused on learning behaviour have found trends that agree
withwhat evolutionarymodels predict (SlonimandRoth, 1998, List andCherry,
2000, Cooper and Dutcher, 2011), notably that proposers learn much faster
than responders. Finally, the GBS and model and relatives may serve as an
explanation for cultural evolution, or evolutionary processes outside the lab‑
oratory that could provide an ultimate explanation for norms and preferences
which are relevant to experimental data.

4A more detailed discussion of the relevance of this paper can be found in section 3.3.
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1.2.1 The dynamics for the full UG have only been
explained using minigames

Despite its importance, it remains unclear frommany of the articles citing GBS,
as well as from GBS themselves, whether the evolutionary dynamics of the UG,
particularly when using noisy replicator dynamics, are fully understood. The
lack of clarity stems from the fact that the only detailed evolutionary analysis
provided is for a minigame version of the UG, where the proposer has only
two possible offer amounts. The main result comes from computer simula‑
tions of the full game. A satisfactory analysis of the dynamics of the full game
has never been provided, nor has it been clearly established that a minigame
can constitute an adequate approximation for the full game. As I will show in
chapter 2, this is not a trivial problem, since there are dynamic complexities
in the full UG model’s evolutionary dynamic system that are absent from the
minigame version, and a naive approach gives results that are incompatible
with the minigame analysis.

1.2.2 The need for suitable microfoundations
I have noted above that evolutionary models can be used both as a proxy for
boundedly rational interactive learning and to provide explanations for traits
that have evolved in a different context, particularly cultural evolution of so‑
cial norms. GBS (p. 70) argue that the social norms triggered in the short term
by laboratory experiments can be presumed to have evolved in “real‑life bar‑
gaining situations that are superϐicially similar to the ultimatum game in some
respects” and that “we must therefore examine long‑run behavior in these ex‑
ternal situations for the origin of the norms that guide short‑run behavior in
laboratory experiments on the ultimatum game”. This raises the possibility of
reinterpreting the GBS model as a model of cultural evolution that can explain
initial behaviour, norms and preferences.

However, this reinterpretation requires more than simply a assertion, as
it needs to be clearly established that the model can be suitable for such an
interpretation. The replicator dynamics only describes aggregate dynamics of
strategy frequencies. In chapter 3, I argue that a cogent and defensible interpre‑
tation of such a model requires a more detailed account of what occurs at the
level of individual actors, i.e. how andwhy they hold and revise their strategies
over time in response to their experiences.

To fulϐil this requirement, there have been a number of efforts by evolu‑
tionary game theorists to build more explicit “microfoundations” models for
aggregate‑level evolutionarymodels (Sandholm, 2010). GBS (p. 85) justify their
use of replicator dynamics by presenting an individual‑level learning model in
which individuals adopt a randomly chosen alternative strategywhen their pay‑
offs fall below their aspiration levels. These aspiration levels are drawn from
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a uniform random distribution. However, this learning model is hard to rec‑
oncile with the notion of cultural evolution, and I argue that a model based on
imitation of successful peerswould bemore suitable. Even though the different
microfoundations models aggregate to the same systemic dynamics, there are
important implications – elaborated upon in the chapter 3 summary below –
for the interpretation of the model that calls into question the reasonableness
of the GBS result.

1.2.3 How can fairness norms evolve where they do not
already exist?

The conclusions in chapter 3 lead to a negative assessment of the relevance of
the GBS result as a cultural evolution explanation for norms and preferences
that support relatively equal divisions in UG experimental data. Harms (1997)
andAkdeniz andVanVeelen (2023), in differentways, support the view that the
GBS result is sensitive to thewaymutation and state space is set up. In addition,
part of my argument (section 3.7) is that the GBS result may be too fragile to
survive realistic stochastic shocks. Baseline models may therefore provide per‑
suasive arguments for why relatively equal divisions in the UG might survive
for an extended period of time, but the result is not strong enough to explain
why this should necessarily be the expected endpoint of very long‑run evolu‑
tionary processes. In addition, these models do not provide a reason why such
behaviour should be there in the ϐirst place. I agree with Akdeniz and Van Vee‑
len (2023, p. 591) that a model that can explain empirical UG results should
include some factors that can, at least sometimes, make rejections have a posi‑
tive effect on responders’ payoffs.

I have argued above (section 1.1.2) that concern for reputation is a plausi‑
ble reason why responders reject low offers in the UG. This hypothesis does
not require subjects to wrongly think they are playing a completely different
game (Akdeniz andVanVeelen, 2023, p. 571) or that they are playing a repeated
game (Fehr and Schmidt, 2006, p. 629). It merely requires subjects to behave
as if they think their actions may become known, even with only a small prob‑
ability, to future proposers that they might interact with. There is empirical
support for this: Hoffman et al. (1996) ϐind that subjects offer less in dictator
games with unusually strict anonymity treatments5 compared to treatments
with “ordinary” anonymity. In real‑world social groups, anonymity may have
been quite limited, and consequences of bad reputations severe, leading to an
ingrained reluctance to take risks in this regard.

The literature in this area, evolutionary models of the UG with reputational
5Their strictest treatment use a double blinddesign, with substitute blank slips that subjects

canput in envelopes tomake the envelopes they hand in appear equally thick regardless of their
choices.
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mechanisms, is not well developed, despite a number of valuable contributions.
Four shortcomings can be identiϐied. Firstly, existing models tend to make ar‑
bitrary assumptions about the availability of information to proposers on re‑
sponders, rather than linking such knowledge to histories of past interactions
that could conceivably have taken place. Secondly, there is a limited notion of
what knowledge of past interactions can be useful to proposers; in particular
only negative information tends to be considered. Thirdly, there is too heavy
reliance on computer simulations without explicit analytical results to help un‑
derstand how and why outcomes arise frommodel assumptions. Finally, there
are open questions on e.g. the effects of initial conditions and existence and
stability of equilibria, as these are not always systematically investigated and
explicitly described.

The most widely cited paper on this topic, Nowak et al. (2000), reports that
their model6 is bistable, meaning that a fair (relatively equal) outcome can be
sustained, but a highly unequal outcome as in the UG’s SPNE is also stable.7
There is nothingwrongwithmultiple equilibria, but the problemhere is similar
to that of the GBS model – the model cannot explain how norms for an equal
division can arise from a state where such norms are initially absent. As I will
show in chapter 4, by simply adopting a more holistic view of reputations –
allowing both negative and positive reputations – it becomes possible to give
such an explanation.

1.2.4 General concerns
Debove et al. (2016, p. 249) express a number of valid general concerns regard‑
ing existing literature on evolutionary models of the ultimatum game. Some of
the issues not alreadymentioned include loose usage of technical terms (some‑
times, it seems, due to researchers fromdifferent academic disciplines not shar‑
ing a common language), unjustiϐied constraints on behaviour (e.g. some mod‑
els where agents can play both proposers and responder roles simply assume
that proposers will be empathetic, i.e. not offer less than they demand as re‑
sponders), and lack of clear reporting on initial conditions. The last concern
in particular seems to be connected to a general lack of adequate analysis of
dynamics and over‑reliance on computer simulation results, particularly agent‑
basedmodels, to “explain fairness” without sufϐicient theoretical elucidation of
the results.

6I am referring here to their ϐirst model, a minigamemodel, which is the only one for which
a relatively comprehensive (though also brief) analysis of dynamics is provided.

7They do argue that the latter may have a smaller basin of attraction.
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1.3 Research objective and questions
The overall objective of this dissertation is to use evolutionary models to ad‑
vance understanding of the structure of the ultimatum game and to provide
and critically interpret explanations from evolutionarymodels for empirical re‑
sults.

The aim is not simply to build yet more models that explain how fairness
could have evolved, but also to critically interpret and evaluate existingmodels,
with a particular focus on GBS.

More speciϐic research questions include:

1. Can minigames provide an adequate account of the full UG’s dynamics?

2. Can the GBS model and the GBS result (i.e. evolutionary stable but im‑
perfect equilibria) provide a reasonable account of cultural evolution of
behavioural norms?

3. Can responders’ concern with their reputations provide an explanation
of behavioural norms exhibited in UG empirical results?

1.4 Chapter summaries and contributions
This section provides brief summaries of themain research chapters of this dis‑
sertation. At the end of each summary, I highlight advances and contributions
made.

1.4.1 Chapter 2: Using minigames to explain imperfect
outcomes in the ultimatum game

In this chapter, the ϐirst speciϐic research question listed above is addressed:
Can minigames provide an adequate account of the full UG’s dynamics?

As with any game where players choose an amount of money, the UG has
many pure strategies, which necessitates a large number of variables in evolu‑
tionary models to track the frequency of each pure strategy. This, along with
a large number of weak Nash equilibria, leads to interesting and complicated
dynamics in which the system can linger for an extended time period close to a
Nash equilibrium, only to be followed by a sudden escape and a comparatively
rapid transition to another such state, a pattern that can repeat a number of
times before the model comes to an eventual ϐinal rest. However, in the liter‑
ature, it is common to perform detailed analysis of dynamics only on simpli‑
ϐied minigames in which proposers are each limited to only two possible offer
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amounts. It has not been established that minigames can provide a full under‑
standing of the full game’s evolutionary dynamics, since the simpliϐied models
lack the multiplicity of equilibria and complicated dynamics of the full UG.

I demonstrate in this chapter that the naiveminigame analysis fails in a crit‑
ical respect to account for a well known and important result from computer
simulations of the full game, which I have called the GBS result above, i.e. that
evolutionary dynamics in the full game does not generally lead to the SPNE re‑
sult. It is clear from GBS’s two‑dimensional analysis that the role of mutation
(noise) is to keep the frequency of the responder strategy that rejects lowoffers
at a sufϐicient level to make the high offer a best response for proposers, which
is necessary tomaintain an imperfect equilibrium. But in the full game, inwhich
there aremany strategies, mutation appears to work in the wrong direction, by
dissipating frequency among a large number of strategies, thus lowering rather
than raising the required responder frequency in order to stabilize an imperfect
equilibrium.

A more rigorous analysis is developed that does account for the full game’s
dynamics in a satisfactoryway, by identifying a suitable subsets of the full game’s
strategy space andderiving conditional frequencydynamics for the subsets. Each
of the game’s Nash equilibria then has an associated conditional game inwhich
all higher offers and demands are excluded from the strategy sets. I show that
these conditional games are structurally similar to a full UG game and the con‑
ditional dynamics applicable to them are of the same form as the full game’s
noisy replicator dynamics. Since the conditional dynamics are derived directly
from the full game’s dynamics, an equilibrium in one of the conditional games is
also an equilibrium of the full game. In addition, a two‑dimensional minigame
is shown to provide a good approximation for the conditional games’ dynamics,
so conclusions derived from stability analysis on the minigame can be mapped
back to the full game.

Speciϐic advances in this chapter include the development of a technique by
which the analysis of dynamics in aminigame can bemade applicable to amore
complicated, larger game. The analysis also provides greater clarity on why
some imperfect equilibria in the full game can be stabilized more easily than
others, which has previously been the subject of educated guesswork based
on simulation results rather than rigorous analysis. The chapter also develops
techniques that are likely to have wider applicability. The analysis of condi‑
tional frequency dynamics allows clear focus on the dynamics within a game
with reduced strategy sets. Graphical selection‑mutation equilibrium loci anal‑
ysis can help to understand dynamic forces in a two‑dimensional model, par‑
ticularly when there are multiple forces (e.g. selection andmutation) balanced
against each other at the equilibria.
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1.4.2 Chapter 3: Stochastic learning and emulation in the
ultimatum game

This chapter addresses the second speciϐic research question, namely, can the
GBSmodel and the GBS result (i.e. evolutionary stable but imperfect equilibria)
provide a reasonable account of cultural evolution of behavioural norms?

The second direction of research based on the GBS model, in chapter 3, ad‑
dresses its interpretation and relevance to explaining empirical results. The
GBS model’s replicator dynamics speciϐies aggregate dynamics of strategy fre‑
quencies, which does not make clear what is occurring at the individual level.
In their paper, GBS sketches an individual‑level learningmodel based on agents
changing their strategies when payoffs fail to meet random aspiration levels. I
argue that this model is not appropriate for exploring the historical context of
cultural evolution, where entrenched behavioural norms and preferences may
have evolved. In this paper, I develop and match the aggregate deterministic
GBS model with a simple stochastic individual‑level model, similar to a model
in Weibull (1995, p. 158), which is based on imitation of social peers. Here,
agents have a degree of sensitivity to payoffs of others when deciding who to
imitate, unlike the random‑aspiration‑level model where this decision is made
blindly. I argue that this model is suited to an interpretation of cultural evolu‑
tion of social norms. The model can be specialized so that it aggregates either
to the standard continuous replicator dynamics used in GBS or to the discrete
or “adjusted” replicator dynamics used in Binmore and Samuelson (1994).

Themodel suggests two implications that reϐlect negatively on the relevance
of the GBS result to empirical data. Firstly, the asymmetry GBS assume be‑
tween proposer and responder selection and mutation rate parameters to ob‑
tain their result may have the unreasonable implication at individual level that
responder mutation rates are doubly boosted when the standard continuous
replicator dynamics are used, and secondly their aggregate dynamic equations
may be relying unreasonably heavily on the law of large numbers to suppress
individual‑level stochastic effects. GBS’s modelling correctly points out that
learning by responders may be very slow compared to proposers, and overall
adjustment towards the subgame‑perfect equilibrium may be slow enough to
be practically imperceptible, so one should not necessarily expect to observe
subgame‑perfect outcomes in empirical data. However, their main result, the
asymptotic stability of non‑subgame‑perfect equilibria, may require unreason‑
ably biased parameter values, and the stability may be too fragile to survive
realistic real‑world stochastic effects, so we should not expect to observe such
a result either.

Speciϐic advances in this chapter include the development and interpreta‑
tion of an individual‑level learningmodel that aggregates to either the standard
continuous replicator dynamics or to the adjusted discrete replicator dynamics.
Thismodel could be applied to other games. In addition, a negative assessment
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is reached about the applicability of the GBS model’s ability to explain cultural
evolution of behavioural norms and/or preferences that might explain empiri‑
cal results in UG experiments.

1.4.3 Chapter 4: An evolutionary perspective on good and
bad reputations in the ultimatum game

This chapter addresses the third speciϐic research question: Can responders’
concern with their reputations provide an explanation of behavioural norms
exhibited in UG empirical results?

This chapter proceeds from the notion that building up a credible reputa‑
tion as a tough bargainer requires costly demonstrations that one is willing to
reject low offers. There is, however, a paradox in this: if responders success‑
fully deter low offers, the conditions needed to generate and communicate a
track record as a tough bargainer is thereby undermined. If the availability of a
certain kind of information results in a pattern of behaviour that in itself has an
impact on the availability of the information, then information must be treated
as endogenous for the theory to be complete.

In this chapter, I thereforedevelop a general endogenous informationmodel
framework for two‑player sequential‑move population games inwhich the ϐirst
player’s strategies are mappings from sets of information, which I call signal
sets, about the second player’s past behaviour. A signal set consists of zero
or more signals, where a signal corresponds to an action proϐile. For exam‑
ple, in the ultimatum game, a signal could be (4, 1), indicating that the respon‑
der was observed accepting an offered amount of 4, and a signal set could be
{(4, 1), (2, 0)}, indicating that the responder was observed, in separate inter‑
actions, to accept 4 and reject 2. The ϐirst player (proposer) is assumed to
have a certain probability to observe each of the action proϐiles of the second
player that occurred in a sample of some ϐixed size of that player’s interactions.
The framework is ϐlexible and general enough to accommodate any number of
strategies by either player, and any number of signals that can follow from in‑
teractions.

The framework deϐines an endogenous information equilibrium, in which
the system’s information state, which is a probability distribution over possi‑
ble signal sets per responder type, induces a distribution of action proϐiles per
responder type, which in turn generates the same information state. Strate‑
gies are ϐixed during the rounds of repeated play required for the information
state to stabilize, as this is assumed to be a short‑run process. Reputations are
therefore generated instantaneously at every point in evolutionary time. The
framework calculates, for the general case, expected utilities for each player
given strategy distributions.

Applied to the UG, this general framework enables a more holistic view of
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reputations than have been considered previously. Even in the UG minigame,
the framework identiϐies not onlynegative reputations, as consideredbyNowak
et al. (2000), but also positive reputations: proposers may want to increase
their offers to responders they know to have rejected a low offer. As the re‑
sults section shows, an evolutionary model based on positive rather than neg‑
ative reputations in the ultimatum game gives entirely different dynamics and
results.

A series of minigame models generated using the general framework is ex‑
plored in detail using a combination of explicit solutions and deterministic sim‑
ulations based on the standard replicator dynamics. Being deterministic, these
simulations allow a clear and comprehensive analysis of dynamics using trajec‑
tory plots. The issue of endogenous information is shown to be crucial. The
ϐirst model is a negative‑reputation model, and the dynamic system is bistable
for a large range of parameter values, with both low‑ and high‑offer equilibria,
reϐlecting the UG’s SPNE and relatively equal divisions respectively. Paradox‑
ically, in the low‑offer equilibrium proposers have strong information about
responders, but in the high‑offer equilibria they have very weak information.
Despite this, the payoff structure of the game prevents a low‑offer equilibrium
from being escaped, while it is shown that a high‑offer equilibrium can be sus‑
tained by very little information.

In contrast to negative reputations, positive‑reputation models can evolve
out of a state where predominantly low offers are made (and accepted), thus
providing a viable theory for how behavioural norms resulting in equal divi‑
sions could have emerged where they did not exist before. However, positive‑
reputation models have only mixed‑strategy equilibria, and the equilibria are
often unstable, leading to dynamic systems with limit cycles and oscillations.
They also feature a signiϐicant positive rate of rejections. Finally, I combine
both reputation types in a single model, and ϐind that they have complemen‑
tary effects: positive reputations can bootstrap the system out of a low‑offer
state, while negative reputations are then effective to stabilize a high‑offer equi‑
librium and improve efϐiciency. The ϐinal part of the results section brieϐly ex‑
plores larger models with more complex information structures, showing that
sophisticated proposer strategies can evolve, though the computational inten‑
sity of simulating suchmodels is a limiting factor that will require further work
to resolve.

The chapter’s speciϐic advances include the general endogenous informa‑
tion framework, which is ϐlexible and can be used to analyse many different
kinds of games where the ϐirst player reacts to imperfectly observed past play
of the second player, including other types of bargaining interactions and tradi‑
tional signalling applications. As far as I am aware, this is the ϐirst general theo‑
retical treatment of endogenous information in this class of population games.8

8Nowak et al. (2000)’s second model includes endogenous information but this is an agent‑
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The full analysis of dynamics in the reputation models, in the light of endoge‑
nous information, also contributes towards a comprehensive understanding of
the role of the the reputation mechanisms in the UG.

1.5 Methodological notes
The methods used in this dissertation are a mixture of theoretical models and
computer simulations. As my research is focused on a speciϐic, concrete model,
i.e. the ultimatum game, I do not generally prove statements and draw conclu‑
sions for abstract classes of games. In some caseswheremodels and techniques
are developed that have general applicability, such as the endogenous informa‑
tion framework in chapter 4, this is pointed out. Similarly, all three of the main
research chaptersmake use of the replicator dynamics rather than abstract evo‑
lutionary dynamics. Although this limits generality, I provide justiϐication for
this choice throughout the text, and there is no reason to believe that the results
will not apply to a more general class of dynamics. In Chapter 3, I develop an
individual‑level learning model that directly supports the replicator dynamics.

Computer simulations are used in conjunction with theoretical models to
avoid arbitrary speciϐications and inexplicable “black‑box” results. A particular
emphasis ofmy research is building theoretical explanationswhere others have
reported only simulation results. Explicit mathematical solutions are derived
in cases where helpful, but this is not a speciϐic objective.

In analysing dynamic systems, I attempted to provide defensible and com‑
prehensive descriptions of dynamics across the entire state space, taking care
to identify all equilibria and stability conditions as far as possible. In particu‑
lar, I attempted to take into account and identify the effects of initial conditions,
andprovide a full accountwheremultiple equilibria exist. For the analysis of dy‑
namics, I generally use computer simulations of deterministic systems to trace
out trajectories on graphs, where dimensionality allows. This often provides
a clearer intuitive understanding of the dynamic systems than overly abstract
general proofs can provide.

I have attempted to provide careful and justiϐied interpretation of theoreti‑
cal and simulation results for real‑world relevance. Chapter 3’s objective was
based computer simulation that simply tracks speciϐic histories of play, not probability distri‑
butions of information, and it cannot easily be used for a comprehensive analysis of dynamics.
After having independently completed the endogenous information framework in chapter 4, I
discovered that Zhang et al. (2023)’s model, based on a Markov chain to represent transitions
between information states, features endogenous information and a similar notion of endoge‑
nous information equilibrium to mine. However, they calculate their information equilibrium
manually using an exhaustive process and they present no general theory on the information
system. In addition, their model only accommodates two reputational statuses (each agent is
“good” or “bad”) and, only two strategies at any point in time, which are signiϐicant limitations.
I note further differences in footnote 18 in chapter 4.
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largely to illustrate the importance of giving careful attention to this aspect.



Chapter 2

Using Minigames to Explain
Imperfect Outcomes in the
Ultimatum Game

2.1 Introduction
Evolutionary models of apparently simple games can exhibit surprisingly com‑
plicated dynamics. The ultimatum game (UG) presents a particularly interest‑
ing case. In this game, a proposer is asked to divide a ϐixed amount of money
between herself and a responder, and the responder can either accept or re‑
ject his offered share. Money is paid out according to the proposal if accepted,
but both players receiving nothing if rejected. If the players’ preferences are
completely given by the current game’s monetary payoffs, the only rational be‑
haviour for the responder is to accept all positive offers. The proposer, in turn,
rationally proposes the smallest positive amount possible. The game’s unique
subgame‑perfect Nash equilibrium (SPNE) therefore allocates all the surplus
to the proposer, even though this outcome does not enjoy empirical support in
experimental settings.1

As with any game where players choose an amount of money, the game has
many pure strategies, which necessitates a large number of variables in evolu‑
tionary models to track the frequency of each pure strategy. This, along with
a large number of weak Nash equilibria, leads to interesting and complicated

1Human proposers typically offer between 30 and 50 per cent of themoney and responders
often reject offers below 20 per cent (Camerer and Thaler, 1995, p. 210, Oosterbeek et al., 2004,
Güth and Kocher, 2014, p. 398). Many experimentalists have suggested that the subjects are
motivated by social preferences (e.g. Charness and Rabin, 2002; Fehr and Schmidt, 2006; Cox
et al., 2007; Blanco et al., 2011). Young and Burke (2001, p. 567) emphasize that the most
commonmodal splits in experimental data are simple fractions, particularly 50%, and notions
of fairness appear to be endogenous, with variability between cultures. They argue that these
features lend support to a theory of evolutionary origins of bargaining behaviour.

18
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dynamics in which the system can linger for an extended time period close to a
Nash equilibrium, only to be followed by a sudden escape and a comparatively
rapid transition to another such state, a pattern that can repeat a number of
times before the model comes to an eventual ϐinal rest (c.f. ‘puctuated equilib‑
rium effect’ in Young, 1996, p. 112). A thorough appreciation and interpreta‑
tion of the strategic structure of the UG arguably requires studying the game
in an evolutionary setting, because evolutionary models can showwhich kinds
of game‑theoretic solutions can be reached and the manner in which they are
reached under simple behaviour‑updating mechanisms that can loosely proxy
for human learning and imitation processes (Mailath, 1998; Friedman, 1998).2

Despite a steady ϐlow of literature on the UG including a number of evo‑
lutionary models and simulation results,3 clear theoretical explanations of its
evolutionary dynamics have been limited to simpliϐied versions of the game, so‑
called “minigames”, in which proposers are each limited to only two possible
offer amounts (e.g. Gale et al., 1995; Mailath, 1998; Huck and Oechssler, 1999;
Nowak et al., 2000; Sigmund et al., 2001; Napel, 2003; Uriarte, 2007; Shirata,
2012; Skyrms, 2014; Forber and Smead, 2014; Zhang et al., 2023). Minigames
are also often used in experimental work (e.g. Abbink et al., 2001; Smith and
Wilson, 2018; Aina et al., 2020).

In the minigame, as in the full game, there is always a NE for each possible
offer amount, but only the lowest offer can be a SPNE, so from a classical per‑
spective, theminigame analysis appears to give a reasonably complete analysis
of the UG’s essential strategic features. But it is not so clear that minigames can
give us a full understanding of the dynamics in evolutionary models, since the
simpliϐied models lack the multiplicity of equilibria and complicated dynamics
of the full UG.4 I will demonstrate below that the naive minigame analysis fails
in a critical respect to account for a well known and important result from com‑
puter simulations, namely that evolutionary dynamics in the full game do not
generally lead to the SPNE result. The aimof this chapter is therefore to develop
a rigorous analysis of the relationship between theminigameevolutionary anal‑
ysis and the full game, and through this to derive a defensible explanation for
the mentioned result in the full game.

For concreteness, this chapter will make use of a particular evolutionary
modelling framework, ϐirst applied to theUGbyGBS. Proposers and responders

2This is not to suggest that an evolutionarymodel necessarily provides themost appropriate
explanation for empirical results, since the evolutionary dynamics we study may not be quite
the right description of human learning processes, or there may important omitted factors, e.g.
other‑regarding preferences.

3Notable references include Binmore and Samuelson (1994), Gale et al. (1995), Roth and
Erev (1995), Vriend (1997), Harms (1997), Peters (2000), Abbink et al. (2001), Napel (2003),
Brenner and Vriend (2006) and Poulsen (2007). See also the surveys Debove et al. (2016),
Akdeniz and Van Veelen (2023) and the literature referenced therein.

4Debove et al. (2016, p. 249) raise a number of different concerns with minigames, which
seem to relate more to their interpretation than to their adequacy for explaining dynamics.
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are drawn from separate populations of inϐinite size and randomly matched,
with standard continuous‑time replicator dynamics determining how popula‑
tion‑level strategy frequencies are updated.5 A deterministic noise (or muta‑
tion) term is added that represents occasional errors or innovations. Apart
from adding realism, this should prevent the system from “getting stuck” at
states simply because some strategies have become extinct. Ordinarily, one
would expect the addition of such noise to ϐlush out strategies that are not sub‑
game perfect – if proposers accidentally make low offers every now and then,
responders, given enough time, should stop rejecting such offers, which would
eventually make low offers rational for proposers.6 It is therefore surprising
that simulation results (reported by GBS) show that the system can come to
a permanent rest at stable equilibria which are not SPNE, for example where
the responder gets a share of 7 or 9 out of a total amount of 40 (depending on
parameter choices).

The GBS paper provides a valuable analysis of a simpliϐied minigame ver‑
sion of the game (reviewed in sections 2.2 and 2.3), in which each player has
only twopossible strategies, high (equal split) and low(all surplus toproposer).7
This leads to the ϐinding that the ratio of responder to proposer mutation rates
is a crucial factor: a stable imperfect equilibrium exists if and only if this ratio
is above a particular threshold. It is clear from GBS’s two‑dimensional analy‑
sis that the role of mutation (noise) is to keep the frequency of the responder
strategy that rejects low offers at a sufϐicient level to make the high offer a best
response for proposers, which is necessary to maintain an imperfect equilib‑
rium. Even if responderswho reject positive offers get a slightly lower expected
payoff because occasional mutant proposers make low offers, the difference is
small enough that it is possible for the weak mutation force to balance the in‑
herently stronger selection (learning) force.

Whenwe consider the full UG, this explanation appears to break down. Con‑
sider the followingmodelling set‑up: Responder strategies are identiϐied as de‑
mands, e.g. to demand 9means to accept a share of 9 or better and reject lower

5The replicator dynamics is based on biological models of differential reproduction rates
(Taylor and Jonker, 1978) and is not an explicit learning model, though there are close links
with more explicit learning models (e.g. Börgers and Sarin, 1997; Schlag, 1998). Such a model
is also developed in chapter 3. GBS (p. 83) argue that their results should be similar in “virtually
any system in which growth rates of strategy proportions are smooth, increasing functions of
expected payoff differences”. Indeed, the results of Roth and Erev (1995) using a reinforcement
learning model are broadly similar.

6The idea of low‑probability “mistakes” undoing some Nash equilibria was also the original
motivation for Selten’s (1975) trembling hand perfect equilibrium: given that every choice in
a game is made with some positive probability if mistakes can occur, agents must choose ratio‑
nal behaviour also at off‑equilibrium decision nodes (Van Damme, 1991, pp. 10–11). See also
Young (1996, p. 109–111).

7A responder with a “low demand” strategy would accept all offers, while a “high demand”
strategy would accept high and reject low offers.
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amounts (we exclude nonmonotonic responder strategies, e.g. rejecting 5 but
accepting 3), so that there is exactly one possible responder strategy for each
possible offer amount. Proposers have the same strategy set, the amounts here
interpreted as offers, meaning amounts that the responder would receive if ac‑
cepted. In the noisy replicator dynamics model, uniformmutation acts to dissi‑
pate frequency among many strategies, so that it tends to bring each strategy’s
frequency to a uniform, relatively small share of the total, e.g. 1

40 if there are 40
strategies – this can be called themutation target for convenience. The problem
is that, to sustain an equilibrium, one particular responder strategymust main‑
tain a frequency above a critical value, which is itself higher than this mutation
target.

For example, if proposers are asked to divide an amount of 40, an equilib‑
rium where proposers offer 9 would require that the frequency of rejection of
the next lower offer of 8, i.e. the responder strategy “demand 9”, be at least 1

32 .
8

Thismeans that the “demand 9” strategymust have a frequency higher than 1
32 ,

but it seems impossible formutation to be able to do this becausemutationwill
tend to pull frequencies down towards the mutation target of 1

40 , rather than
push them up to above 1

32 as suggested by theminigame analysis. We therefore
lack an easy explanation for the simulation results that indicate that there is in
fact a stable dynamic equilibrium where proposers offer 9 in this setting (re‑
ported by GBS, p. 63, and veriϐied by my own simulations). What prevents the
frequency of responders demanding 9 from dropping below the critical 1

32 , and
thus the equilibrium from unravelling? On the surface, it appears that respon‑
dermutation should be a destabilizing force, so how can simulations show that
high responder mutation rates are needed for stability?

As will be explained in this chapter, questions like these can only be an‑
swered on the basis of a fuller understanding of the evolutionary dynamics
of the model than is available from the minigame. It turns out that the criti‑
cal responder strategy frequency referred to above is held above the critical
threshold indirectly through a combination of mutation and selection ϐlows. If
proposers are mostly offering 9, there are 31 responder strategies with higher
demands that get a substantially lower expected payoff, approximately zero. As
a result, in equilibrium, there are very low frequencies of such high‑demand
responder strategies. But precisely because their frequencies are so low, muta‑
tional inϐlow to them from ϐitter low‑demand strategies occur (which also ex‑
plainswhy these suboptimal strategies donot simply die out completely). Then,
because their payoffs are so low, the mutational inϐlow to these high‑demand
strategies drives a matching outϐlow due to selection pressure. Some of this

8Itmust not be proϐitable for the proposer to offer any lower amount, in particular8, instead
of 9. Assuming that an offer of 9 is always accepted, the proposer’s expected payoff is 31when
offering 9 and 32weighted by the probability of acceptance when offering 8.
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counterϐlow helps to increase the frequency of the critical strategy required to
stabilize the equilibrium.

What then of the minigame? The chapter will show that a minigame analy‑
sis can be very helpful to understand important structural features of the full
game, provided that one considers the full game’s dynamics in conditional form.
This involves identifying a suitable subset of the full game’s strategy space and
deriving conditional frequency dynamics for the subset, which is the evolution
of frequencies relative to the combined frequency of all the strategies in the
subset. Each of the game’s Nash equilibria has an associated conditional game
in which all higher offers and demands are excluded from the strategy sets. I
show in section 2.5 that these conditional games are structurally similar to a
full UG and the conditional dynamics applicable to them are of the same form
as the full game’s noisy replicator dynamics.

Since the conditional dynamics are derived directly from the full game’s dy‑
namics, an equilibrium in one of the conditional games is also an equilibrium
of the full game. This is useful as it helps to focus the analysis on the forces
and factors that are relevant to the stability of the equilibrium in question, by
removing complicating frequency ϐlows to and from strategies outside the sub‑
set from consideration. The puzzle alluded to earlier, that mutation appears to
have the “wrong” direction, is resolved as the mutation target for the critical
conditional frequency is higher in inverse proportion to the number of strate‑
gies in the subset, thus providing an explanation for the role of mutation in
maintaining the stability of an imperfect equilibrium thatmatches the situation
in the two‑dimensional minigame.

The argument continues in section 2.6 by noting that in these conditional
games, only two variables really matter for understanding the system’s dynam‑
ics in the vicinity of the equilibrium: the (conditional) frequencies with which
its characteristic amount 𝑒 is offered and demanded, respectively. This is be‑
cause, in these conditional games, the best response for each player only de‑
pends on the conditional frequency of the corresponding strategy of the other
player. This means that the dynamic behaviour of each conditional game near
its characteristic Nash equilibrium can be understood in terms of only two vari‑
ables, and moreover these variables behave, to a close approximation, like the
two variables in the two‑dimensional minigame. This is supported by a Monte
Carlo simulation exercise. In this way, the dynamics of the full game can be re‑
lated to a series of two‑dimensional minigames, each linked to the correspond‑
ing conditional game.

Apart from showing that the minigame analysis is indeed applicable to the
full game’s dynamics, the more precise understanding of the relationship be‑
tween the minigame and full game yields insights into the dynamics of the full
game in the vicinity of the various Nash equilibria. In particular, it is possible
to give clear explanations for why some equilibria can be stabilizedmore easily
than others. To achieve this, a graphical analysis, based on partial or unilateral
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dynamic equilibrium conditions for one population at a time, called selection‑
mutation equilibrium loci, is developed (introduced in section 2.4). From this
analysis the critical role of two different thresholds for a speciϐic responder fre‑
quency for each conditional game is identiϐied, namely themutation target and
the critical frequency that wouldmake the corresponding offer a best response
for proposers. As explained in section 2.7, these vary systematically with the
offer amount and the game’s payoffs. Clear explanations are gained for why
certain equilibria are more difϐicult, or even impossible, to stabilize by adjust‑
ing the parameters of the evolutionary model, such as selection and mutation
strengths.

The chapter therefore aims to advance understanding of the UG, building
on the GBS analysis, which should interest theorists as well as experimental
researchers. It aims to illustrate that minigames have their use but their con‑
nection to a larger game needs to be explicitly derived to avoid misleading ex‑
planations and to appreciate their explanatory value in full. The chapter also
develops techniques that are likely to have wider applicability, viz. the anal‑
ysis of conditional frequency dynamics, which allows focus on the dynamics
within a gamewith reduced strategy sets, and the graphical selection‑mutation
equilibrium loci analysis, which helps to understand dynamic forces in a two‑
dimensional model, particularly when there are multiple forces (selection and
mutation in this case).

2.2 The Gale, Binmore and Samuelson model
Following GBS, the UG is set up to allow the proposer a ϐixed number of possible
strategies, each corresponding to an amount to offer to the responder, while the
responder has the same number of strategies, each representing a minimum
acceptable offer (a “demand”).9 Let $ be the ϐixed total amount of money to be
divided and 𝒮 be the set of possible offers, assumed to contain evenly spaced,
strictly positive elements. In the full GBS model, $ = 40 and 𝒮 = {1, 2, ..., 40}. It
can be pointed out immediately that there is a pure strategy Nash equilibrium
for every element in 𝒮, because if the proposer offers an amount of 𝑖 it is a best
response for the responder to demand 𝑖, and if 𝑖 is demanded by the responder,
it is a best response to offer 𝑖. Let the payoff functions for proposers and re‑
sponders following strategy 𝑖, playing against an opponent following strategy 𝑗
be 𝜋𝑃(𝑖, 𝑗) = {$− 𝑖 if 𝑖 ≥ 𝑗, otherwise 0} and 𝜋𝑅(𝑖, 𝑗) = {𝑗 if 𝑗 ≥ 𝑖, otherwise 0}
respectively. To conserve space and aid readability, I will drop 𝑃 and 𝑅 super‑
scripts for statements that apply to both proposers and responders where pos‑
sible, for example 𝜋 can refer to either 𝜋𝑃 or 𝜋𝑅 depending on context.

9This assumes that a responder who accepts a certain offer will also accept all higher offers
and a responder who rejects a certain offer will also reject all lower offers.
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Assume there is one inϐinite population of proposers and one inϐinite popu‑
lation of responders, and that each agent plays a ϐixed strategy at any moment
in time. Let 𝑥𝑃𝑖 be the fraction of proposersmaking offers of 𝑖 and 𝑥𝑅𝑖 be the frac‑
tion of responders demanding 𝑖 at the current point in time. The evolutionary
ϐitness, or expected payoff, for each strategy at a point in time is its expected
payoff if the game were played once against a randomly drawn player of the
opposite population, given the current frequency distribution of the opposite
population. We will also be interested in the expected payoff to an agent play‑
ing 𝑖 conditional on the randomly selected opponent following a strategy in a
particular subset 𝒜 ⊆ 𝒮, written as 𝜋(𝑖,𝒜), and the average expected payoff
for players following strategies in𝒜 ⊆ 𝒮 conditional on the opponent follow‑
ing a strategy in ℬ ⊆ 𝒮, written as 𝜋(𝒜,ℬ).10 The (unconditional) current ex‑
pected payoff to 𝑖 is then 𝜋(𝑖, 𝒮) and the population’s average expected payoff
is 𝜋(𝒮, 𝒮).

Evolutionary dynamics for each population are speciϐied by a noisy version
of the standard continuous‑time replicator equation:

𝑑𝑥𝑖
𝑑𝑡 = Δ𝑥𝑖(𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮)) + 𝛿 ൬ 1

|𝒮| − 𝑥𝑖൰ , (2.1)

where (following GBS notation) Δ and 𝛿 are scaling parameters controlling the
rates of the two parts, namely selection and mutation. Selection embodies the
core features of an evolutionary process (see Friedman, 1998, p. 16): there
is adaptation, so that the frequencies of strategies whose payoff are currently
higher (lower) than the population average increase (decrease), but also iner‑
tia, so that, for example, a new strategywith a higher payoff than existing strate‑
gies will only slowly break into and take over a population. Essentially, it is this
inertia, which classical game theory lacks, that allows suboptimal strategies,
such as responders rejecting positive offers, to persist for any length of time
(let alone indeϐinitely).

The second term represents noise, or mutation, in the learning process: at
a low rate 𝛿, agents adopt random strategies selected from a uniform distri‑
bution over 𝒮, either due to mistakes or experimentation.11 Given an inϐinite

10Speciϐically,

𝜋(𝑖,𝒜) =
∑
𝑗∈𝒜

𝑥′𝑗𝜋(𝑖, 𝑗)

∑
𝑗∈𝒜

𝑥′𝑗
, 𝒜 ⊆ 𝒮 and 𝜋(𝒜,ℬ) =

∑
𝑖∈𝒜

𝑥𝑖𝜋(𝑖, ℬ)

∑
𝑖∈𝒜

𝑥𝑖
, 𝒜 ⊆ 𝒮

where 𝑥′ refers to frequencies in the opposite population.
11GBS set Δ = 1 − 𝛿 for most of their simulations, suggesting an interpretation that, when

learning, an agentwill make amistakewith probability 𝛿 instead of learning. There is no partic‑
ular mathematical signiϐicance, however, of Δ + 𝛿 = 1, since the effects of selection and muta‑
tion on 𝑥𝑖 are independent in this continuous‑time speciϐication. For amore general replicator‑
mutator equation explicitly linking selection and mutation see Page and Nowak (2002, p. 94).
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population, the population‑level effect of mutation is fully deterministic, tend‑
ing to make the distribution more uniform over time, a direct consequence of
the assumption of a uniform distribution from which mutating agents select
their new strategy (appendix 2 considers non‑uniform mutation). Notice that
the mutation part of the above equation tends to bring the frequency of each
strategy 𝑥𝑖 towards 1/|𝒮|, (e.g. 1

40 if there are 40 possible strategies) which I
refer to as itsmutation target, and mutation’s effect is proportionally stronger
the further 𝑥𝑖 is from this target.

2.3 The minigame
In both theminigameand the full versionsof theUG, aNashequilibrium(NE) ex‑
ists for each possible offer, and we are interested in which of these correspond
to asymptotically stable dynamic equilibria in the evolutionarymodel based on
the game. Consider a version of the minigame with $ = 4 and 𝒮 = {1, 2}. The
proposer can offer 1 (Low), thus aiming to keep 3 for themselves, or offer 2
(High) for a proposed equal split. The responder can likewise choose between
two strategies, demand 2 (reject Low offers) and demand 1 (always accept).
This minigame has a subgame‑perfect Nash equilibrium (SPNE) where the pro‑
poser offers Low and it is accepted, and also a continuous set of mixed strategy
NEs where the proposer offers High and the responder rejects Low offers with
a probability of 13 or more (ϐigure 2.1a). The latter is not subgame perfect and
would not be robust if the responder were perfectly rational and (even slightly)
uncertain about what the proposer will do.

Trajectories of the noisy replicator dynamics (2.1), with 𝛿𝑃 = 0.01, 𝛿𝑅 =
0.1 and Δ = 1 − 𝛿 (following GBS), are illustrated in ϐigure 2.1b. The dynam‑
ics clearly reϐlect the incentive structure of the game: for proposers, when the
rejection frequency is high, there is a rapid move towards High offers, when
rejection frequencies are low, there is conversely a rapid move towards Low
offers. For responders, there is strong pressure to accept Low offers if the fre‑
quency of Low offers is substantial, but there is no selection pressure either
way when all offers are High. There are two asymptotically stable equilibria: A,
corresponding to the SPNE, and B, the imperfect equilibrium.12

Mutation has the effect of pushing the system towards the centre of the
graph, most strongly when the current distribution is most unequal, i.e. at the
edges. Thus, there is always a small share of proposersmaking Low offers even
when this is clearly suboptimal, i.e. when more than 1

3 of responders reject
Low offers. As long as the current frequency of the responder strategy to re‑
ject Low is below the mutation target 1

|𝒮| =
1
2 , mutation will push it upwards.

12A and B do not correspond exactly to the underlying game’s NEs due to mutation, which
always keeps a small share of suboptimal strategies alive – see below.
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(b) Noisy replicator dynamics
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(c) Selection‑mutation equilibrium
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Figure 2.1: The ultimatumminigame
Notes: $ = 4 and 𝒮 = {1, 2}. (a) indicatesmultiple Nash Equilibriums, (b) indicates the
noisy replicator dynamics (with 𝛿𝑃 = 0.01, 𝛿𝑅 = 0.1), stable equilibria are at A and
B (the latter is imperfect), (c) shows Proposer Eq curve where 𝑑𝑥𝑃𝑖 /𝑑𝑡 = 0 ∀ 𝑖 and
Responder Eq where 𝑑𝑥𝑅𝑖 /𝑑𝑡 = 0 ∀ 𝑖. (d) is the same except 𝛿𝑃 = 0.1, thus changing
the Proposer Eq curve and eliminating the rest point at B.
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This explains the main GBS result, namely the existence of a stable imperfect
equilibrium (point B). The key to understanding why B is stable is to see that
mutation is relatively strong when selection is weak, which is the case for re‑
sponders when the frequency of High offers by proposers is close to one (be‑
cause the expected payoffs to the responder’s strategies are then almost equal),
so that mutation can overcome selection even though 𝛿𝑅 is low, and there is a
net upwards movement in a critical region just below B. We can also see why
a higher mutation rate for responders and a lower mutation rate for proposers
would tend to produce a stable imperfect equilibriummore easily. In the vicin‑
ity of B, respondermutation pushes upwards, away fromA’s basin of attraction,
while proposermutation pushes leftwards, towards A’s basin of attraction. GBS
(pp. 77–80) formally show that the asymptotic attractor B exists if the ratio of
responder and proposermutation rates divided by the respective ratio of selec‑
tion rates,𝜙 = (𝛿𝑅Δ𝑃)/(𝛿𝑃Δ𝑅) exceeds a critical threshold, in this case 3+2√2.
This threshold derives from the structure and payoffs of the minigame in ques‑
tion and can be regarded as ameasure of how difϐicult it is to create a stable im‑
perfect equilibrium by adjusting selection and mutation rates. Unfortunately
the GBS analysis provides little intuition for why the threshold is at this partic‑
ular level – a gap this chapter seeks to ϐill by identifying the factors affecting
it.

2.4 Selection‑mutation equilibrium loci
The stable imperfect equilibrium at B, if it exists, must satisfy the basic require‑
ment for all rest points of dynamic systems, namely that 𝑑𝑥𝑖/𝑑𝑡 = 0 for all
strategies for both players. It is clear from (2.1) that this implies Δ𝑥𝑖(𝜋(𝑖, 𝒮) −
𝜋(𝒮, 𝒮)) = −𝛿(1/|𝒮| − 𝑥𝑖), i.e. that the forces of selection and mutation have
opposite signs and equalmagnitudes. It is useful to consider this condition sep‑
arately for proposers and responders, as is done in ϐigure 2.1c, which shows the
loci where selection andmutation balance each other for proposers (𝑑𝑥𝑃𝑖 /𝑑𝑡 =
0 ∀ 𝑖) and responders (𝑑𝑥𝑅𝑖 /𝑑𝑡 = 0 ∀ 𝑖) respectively, given the frequency
distribution of the opposite population.13 These selection‑mutation equilib‑
rium curves are useful because they link the system’s dynamics (ϐigure 2.1b)
to the best‑response analysis of the underlying UG. The curves are essentially
“smoothed out” versions of the best response (BR) curves (c.f. ϐigure 2.1a), the
smoothing due to mutation, and can be interpreted similarly in that proposers
will adjust horizontally until they areon their curve and responders adjust verti‑
cally until they are on theirs. For example, if the frequency of responders reject‑
ing Low is currently above the Responder Eq curve (but below 1

2), it means that
13The curves are isoclines of (2.1), because they represent points where a variable’s rate of

change is constant, speciϐically zero. The proposer (responder) eq curve connects all the points
in ϐigure 2.1b where the trajectories are vertical (horizontal).
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downwards selection pressure is stronger than the upwardsmutation force, so
the frequency will tend to decline. For proposers and responders alike, where
selection pressure is weaker due to a low payoff gradient, mutation asserts it‑
self more strongly so that the point where selection‑mutation equilibrium is
reached is closer to themutation target (i.e. the centre of the graph).14 For pro‑
posers, this occurs when the frequency with which Low offers are rejected is
closer to 1

3 and for responders when the frequency of High offers are closer to
one.

Where the two curves intersect, 𝑑𝑥𝑃𝑖 /𝑑𝑡 = 𝑑𝑥𝑅𝑖 /𝑑𝑡 = 0 and the system as a
whole is at rest. In ϐigure 2.1c, there are three such points, namely A, B and one
more which is an unstable saddle point. If we increase the proposer mutation
rate (from 0.01 to 0.1) while keeping the responder mutation rate the same (at
0.1), as in ϐigure 2.1d, the proposer curve is visibly more smoothed. The rest
point B nowdisappears: in the vicinity of themissing B, the increased proposer
mutation rate implies that selection‑mutation equilibrium lies further to the
left, but this region lies above the responder equilibrium curve, so the system
moves leftwards and downwards in the area between the two curves, until it
eventually reaches the low offer equilibrium. Another way to eliminate the rest
point B would be to decrease the responder mutation rate, which would have
the effect of pushing the reponder eq curve downwards while still anchored on
the right‑hand side at 12 , becoming relativelymore “square” like the BR curve in
ϐigure 2.1a, so that the responder eq curve passes to the right of the proposer eq
curve near B in ϐigure 2.1cwithout crossing it. We can conclude that a stable im‑
perfect equilibrium exists whenever the two curves cross three times because
the basic shapes are due to the game’s type.15

In addition to mutation rates, other factors that affect the shapes and posi‑
tions of these curves, and therefore also the existence of a stable imperfect equi‑
librium, can nowbe identiϐied. A critical role is played by two important thresh‑
olds for the frequencywithwhich Low offers are rejected. The ϐirst threshold is
1
2 , the mutation target for responders, which (as previously discussed) derives
from the assumption of uniformmutation and the fact that there are two strate‑
gies available to responders in thisminigame. If themutation targetwere lower,
it would be more difϐicult to stabilize an imperfect equilibrium. As will be ex‑
plained later, this becomes important in the analysis of the full game because

14Setting 𝑑𝑥𝑖/𝑑𝑡 = 0 in (2.1), we can also write the rest value for 𝑥𝑖 as the implicit function,

𝑥∗𝑖 =
1
|𝒮|

1 − Δ
𝛿 (𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮))

,

which shows that as 𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮) → 0, 𝑥∗𝑖 →
1
|𝒮| (the mutation target).

15This gives a graphical and intuitive explanation for the GBS condition for 𝜙 mentioned in
the previous section.
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then there are indeed more than two strategies. The second critical threshold
is the frequency of rejections of Low offers that would make it worthwhile for
proposers to offer High, which is 1

3 in this game. This threshold could be made
lower by increasing the expected loss the proposer would suffer if her lower of‑
fer were rejected relative to the gains she would obtain from a lower offer that
is accepted. For example, if $ were increased from 4 to 5, then the potential
gain from offering 1 instead of 2 remains the same, but the potential loss due
to rejection would be 3 instead of 2 and therefore a rational proposer would of‑
fer 1 instead of 2 only if the probability of rejection were 1

4 or lower (assuming
an offer of 2 is always accepted). This threshold corresponds to the height of
the horizontal part of the proposer eq curve in ϐigure 2.1c and it would clearly
make it easier to stabilize an imperfect equilibrium near B if this part of the
curve were lower.16

2.5 Conditional frequency dynamics
The full game has two similar thresholds for each imperfect equilibrium: the
minimum frequency for a speciϐic responder strategy required tomake the cor‑
responding offer a best response for proposers and themutation target for that
responder strategy. As explained in the introduction, however, there are imper‑
fect equilibria known to be evolutionarily stable where the mutation target is
much lower than the minimum level required for an equilibrium, thus seeming
to defy the minigame analysis’s logic.17

16If the second threshold is very low, and the responder to proposer mutation ratio is high
enough, it is possible that the responder eq curve lies entirely above the proposer eq curve in
the vicinity of A, so that there is in fact no longer a stable equilibrium near the subgame‑perfect
solution of the game. In this case, the two curves would cross only once at B, which would then
be a stable imperfect equilibrium. Except for this case, the stable imperfect equilibriumwould
exist if and only if the curves crossed each other exactly three times. What if the curves crossed
once near A but there were also a point of tangency near B? The point of tangency would be
immediately adjacent to a region that does not converge to it and the point would therefore not
be asymptotically stable.

17GBS (p. 63) report simulation results for their fullmodel (with $ = 40 and𝒮 = {1, 2, ..., 40}).
From uniform starting frequencies, with 𝛿𝑃 = 0.01, 𝛿𝑅 = 0.1 and Δ = 1 − 𝛿, the system
eventually settles at a stable equilibrium where proposers offer 9 and responders play a mix
of strategies demanding 9 or less. There are also low frequencies of other strategies due to
mutation (whichwe can ignore for themoment as their effect is insigniϐicant). For the situation
to reϐlect a stable equilibrium it must be a best response for proposers to offer 9 instead of a
lower amount, say 8. This requires 𝑥𝑅9 , the frequency of responders that would reject an offer
of 8 but accept 9, to be above a certain threshold, which can be calculated as approximately
1
32 (the payoff to a proposer offering 9 is 31, while the expected payoff to a proposer offering
8 is (1 − 𝑥𝑅9 )32. If 31 ≥ (1 − 𝑥𝑅9 )32 then 𝑥𝑅9 ≥ 1

32 ). Indeed, 𝑥
𝑅
9 eventually comes to rest at

approximately 0.1047 (my own simulation of the samemodel), which is comfortably above the
required threshold. Yet if 1

|𝒮| =
1
40 and 𝑥𝑅9 ≈ 0.1047, the mutation part of equation (2.1) will
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A different viewpoint is necessary. Suppose we want to understand the dy‑
namics of the system in the vicinity of an equilibrium in which proposers of‑
fer an amount 𝑒. Responders with demands higher than 𝑒 will get a payoff of
approximately zero so the strong selection force will tend to diminish the fre‑
quency of such demands quickly. Given that the frequency of demands higher
than 𝑒 will be very low – approximately zero if the rate of mutation is much
lower than that of selection – proposers making offers higher than 𝑒 will face
strong negative selection pressure as well. The frequency of strategies higher
than 𝑒 for both populations will therefore tend to drop close to zero (see also
Lemma 1 in Peters, 2000), and, in the absence of large coordinatedmass muta‑
tions, will stay close to zero forever, because strategies higher than 𝑒 are never
best responses to 𝑒 or below for either player in the ultimatumgame (excepting
the case where proposers offer zero so that all responder strategies would be
weak best responses, but this is not important).

The evolutionary trajectory has effectively lead to a truncated game, so that
from a certain point in time onwards, both populations place signiϐicant fre‑
quency only on offers/demands of 𝑒 and lower values, and approximately zero
on all strategies higher than 𝑒 – only theweakmutation force keeps such strate‑
gies’ frequencies slightly positive. If we completely remove all offers/demands
higher than 𝑒 from both players’ strategy sets, we have a reduced game which
is itself a full ultimatum game, with the special feature that 𝑒 is the highest pos‑
sible offer that can be made. This can also be called a conditional game, as it
reϐlects the full game’s strategic structure conditional on both players choos‑
ing strategies in the reduced strategy sets (offers/demands of 𝑒 or lower). As
already noted, offers/demands higher than 𝑒 will not be best responses to de‑
mands/offers of 𝑒 or lower, so a best response in the conditional game is a con‑
ditional best response in the full game. Thus, every NE in a conditional game
maps directly to a NE in the full game.

The evolutionary dynamics of the full game can be related to the conditional
game, through the use of conditional frequency dynamics, which considers the
evolution of frequencies relative to the combined frequency of all strategies
in the relevant subset. In what follows, I will assume that the game has been
normalized so that the set 𝒮 consists of successive integers starting at 1. Let
ℰ ∶= [1, 𝑒] be the subset of strategies in 𝒮 smaller than or equal to 𝑒, let 𝑋ℰ
be the combined frequency with which all strategies in ℰ are played and let 𝜉𝑖
be the frequency of 𝑖 being played conditional on a strategy in ℰ being played
(“conditional frequency” for short):

𝑋ℰ ∶=
𝑖∈ℰ

𝑥𝑖 and 𝜉𝑖 ∶=
𝑥𝑖
𝑋ℰ

clearly tend to decrease, not increase 𝑥𝑅9 . It appears as if mutation cannot play the same role
as in the minigame to stabilize a subgame‑imperfect equilibrium.
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The dynamics of 𝜉𝑖 can be derived from (2.1) by a simple application of the
quotient rule:

𝑑𝜉𝑖
𝑑𝑡 =

𝑋ℰ
𝑑𝑥𝑖
𝑑𝑡 − 𝑥𝑖

𝑑𝑋ℰ
𝑑𝑡

𝑋2ℰ
(2.2)

=
𝑋ℰ Δ𝑥𝑖(𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮)) + 𝛿 ൬ 1

|𝒮| − 𝑥𝑖൰൨
𝑋2ℰ

−
𝑥𝑖 Δ𝑋ℰ(𝜋(ℰ, 𝒮) − 𝜋(𝒮, 𝒮)) + 𝛿 ൬ |ℰ||𝒮| − 𝑋ℰ൰൨

𝑋2ℰ
= Δ𝜉𝑖(𝜋(𝑖, 𝒮) − 𝜋(ℰ, 𝒮)) + 𝛿 |ℰ||𝒮|

1
𝑋ℰ

ቆ 1
|ℰ| − 𝜉𝑖ቇ (2.3)

This shows that it is possible to consider the evolution of conditional frequen‑
cies within a subset of strategies in isolation, with reference to the subset’s av‑
erage payoff 𝜋(ℰ, 𝒮), but not the population average payoff 𝜋(𝒮, 𝒮). This is a
general property of the replicator dynamics, and is not dependent on the type
of game nor the choice of subset ℰ. The above equation references the payoffs
to strategies in ℰ as played against the entire set of strategies in the opposite
population 𝜋(•, 𝒮), but it is possible to convert these to expected payoffs con‑
ditional on both players’ strategies being in ℰ, by making use of the ultimatum
game’s payoff structure. Write the payoff to a strategy as a weighted average of
payoffs against opposite population strategies respectively within and outside
of ℰ:

𝜋𝑃(𝑖, 𝒮) = 𝑋𝑅ℰ 𝜋𝑃(𝑖, ℰ) + (1 − 𝑋𝑅ℰ )𝜋𝑃(𝑖, 𝒮 ⧵ ℰ)
𝜋𝑅(𝑖, 𝒮) = 𝑋𝑃ℰ 𝜋𝑅(𝑖, ℰ) + (1 − 𝑋𝑃ℰ )𝜋𝑅(𝑖, 𝒮 ⧵ ℰ)

where ⧵ is the set difference operator. The UG’s payoff functions assign𝜋𝑃(𝑖, 𝒮⧵
ℰ) = 0 and 𝜋𝑅(𝑖, 𝒮 ⧵ ℰ) = 𝜋𝑅(𝑒, 𝒮 ⧵ ℰ) for all 𝑖 ∈ ℰ, so (2.3) can be written as,

𝑑𝜉𝑃𝑖
𝑑𝑡 = Δ𝑃𝑋𝑅ℰ 𝜉𝑃𝑖 ൣ𝜋𝑃(𝑖, ℰ) − 𝜋𝑃(ℰ, ℰ)൧ + 𝛿𝑃 |ℰ||𝒮|

1
𝑋𝑃ℰ

ቆ 1
|ℰ| − 𝜉𝑃𝑖 ቇ

𝑑𝜉𝑅𝑖
𝑑𝑡 = Δ𝑅𝑋𝑃ℰ 𝜉𝑅𝑖 ൣ𝜋𝑅(𝑖, ℰ) − 𝜋𝑅(ℰ, ℰ)൧ + 𝛿𝑅 |ℰ||𝒮|

1
𝑋𝑅ℰ

ቆ 1
|ℰ| − 𝜉𝑅𝑖 ቇ (2.4)

We see that these equations are a form of the noisy replicator equations for the
reduced game; they only reference payoffs of strategies within ℰ played against
opponent strategies also in ℰ. Compared to the dynamics in equation 2.1, selec‑
tion is scaled by 𝑋𝑅ℰ for proposers and by 𝑋𝑃ℰ for responders: If the entire oppo‑
site population followed strategies in ℰ, then selection would be “full strength”,
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but otherwise effective selection would be proportionally weaker. This is a di‑
rect result of the fact that, for both proposers and responders, all strategies in
ℰ give the same payoffs when the opposite side is following a strategy outside
ℰ. Mutation is scaled by |ℰ|

|𝒮|
1
𝑋ℰ

. The second factor represents the inverse of the
share of the current population following frequencies in ℰ, so that mutation ef‑
fectively becomes inϐinitely strong relative to selection as 𝑋ℰ → 0.18 The ϐirst
factor shows that mutation’s effect on conditional frequencies will be diluted
by the presence of more strategies outside ℰ – thus mutation is weak when 𝑒 is
low.

If 𝑋𝑃ℰ and 𝑋𝑅ℰ were constants, the conditional frequencies would move in
exactly the same way as the corresponding frequencies in the reduced game,
with modiϐied selection and mutation rates as indicated. But I have argued
above that, in the vicinity of an 𝑒‑offer equilibrium, these variables will tend
to move to approximately one and stay there forever, thus suggesting that 𝑋𝑃ℰ
and 𝑋𝑅ℰ will be almost constant. We can therefore hypothesize that it is possi‑
ble to analyse the full game’s dynamic properties near the 𝑒‑offer equilibrium
by reference to the dynamics of a reduced game – further support for this from
simulation results is presented below.

Let us nowbrieϐly return to the puzzle sketched above, where itwas pointed
out that mutation does not appear to play the required role of keeping the un‑
conditional frequency 𝑥𝑅9 high in the GBS model. Now consider the effect of
mutation on the conditional frequencywith which 9 is demanded: this variable
comes to rest at approximately 0.1057 in the simulation, but (2.4) reveals that
the mutation target for 𝜉𝑅9 is 1

|ℰ| =
1
9 when 𝑒 = 9, which is higher than 0.1057,

indicating that mutation does tend to push 𝜉𝑅9 upwards at the rest point (bal‑
ancing the downwards selection force). Responder mutation is then responsi‑
ble for maintaining a high enough (conditional) frequency of a high demand
strategy, thus stabilizing the imperfect equilibrium according to the existing
explanation we had for the (stand‑alone) minigame. In short, mutation’s direc‑
tion for the critical variable reverses and the puzzle is resolved when we work
with conditional rather than unconditional frequency dynamics.

The source of the difϐiculty with the unconditional dynamics is revealed by
decomposing it into two parts using (2.2),

𝑑𝑥𝑖
𝑑𝑡 = 𝑋ℰ

𝑑𝜉𝑖
𝑑𝑡 + 𝜉𝑖

𝑑𝑋ℰ
𝑑𝑡 ,

the ϐirst describing selection and mutation ϐlows within the subset ℰ, and the
second describing selection and mutation ϐlows between ℰ as a whole and the
rest of 𝒮. If mutation’s effect on 𝑑𝑥𝑒/𝑑𝑡 is negative, but mutation’s effect on
𝑑𝜉𝑒/𝑑𝑡 is positive, then that simply shows that mutation’s effect on 𝑑𝑋ℰ/𝑑𝑡

18To understand this, consider that when𝑋ℰ is very small, inϐlows to ℰwill be predominantly
due to mutation from strategies outside ℰ.
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must be negative and comparatively large. This makes sense because 𝑋ℰ ≈ 1
and themutation target for𝑋ℰ is |ℰ|/|𝒮| < 1. Since strategies outside ℰ are sub‑
stantively suboptimal, this mutational outϐlow from ℰ creates a corresponding
inϐlow due to selection, some of which accrues to 𝑥𝑒 . One could therefore say
that themechanism that creates a stable imperfect equilibrium at 𝑒 is the same
as in the minigame, but it is obscured by ϐlows to and from the subset ℰ that
have no counterpart in the minigame.

2.6 The minigame approximation
While the conditional dynamics described above already allow certain insights,
the conditional games they refer to are obviously notminigames, because gener‑
ally they have more than two strategies available to each player. Nevertheless,
in this section, I argue that the two‑dimensional minigame dynamic analysis
represents a good approximation of the dynamics applicable to the conditional
games because the UG minigame’s two state variables behave much like two
particular variables of interest in the conditional game, especially near a rele‑
vant imperfect equilibrium.

Supposewe are interested in understanding the full game’s dynamics in the
vicinity an equilibrium (typically to answer questions related to its stability) in
whichproposers offer𝑒 and responders accept𝑒, where𝑒 is higher than the low‑
est available positive offer. Then, as argued earlier, we may consider the con‑
ditional game characterized by having 𝑒 as its highest available offer/demand
and we can determine the evolution of conditional frequencies 𝜉𝑃𝑒 and 𝜉𝑅𝑒 . We
know from the previous section that these two variables evolve approximately
like the corresponding frequencies in the conditional (reduced) game. It can be
claimed that it is only necessary to consider the dynamics of 𝜉𝑃𝑒 and 𝜉𝑅𝑒 to gain
a reasonably complete understanding of the dynamic forces of the system near
the equilibrium in question, and that these variables do indeed behave like the
(offer High, demand High) strategy frequencies in the UG minigame.

The argument for both claims proceeds in three parts: Firstly, I will show
that for both proposers and responders, the condition for 𝑒 to be a best re‑
sponse references no variable except the conditional frequency with which 𝑒
is played by the opposite population. Secondly, these best response conditions
will be decisive not only to describe static equilibria, but also for the dynamics
of 𝜉𝑃𝑒 and 𝜉𝑅𝑒 , because the dynamics for 𝜉𝑖 depend largely on whether or not 𝑖 is
a best response, or more accurately on how close its best‑response condition
is from being met, so that the effect of all other variables on the evolution of
𝜉𝑃𝑒 and 𝜉𝑅𝑒 is approximately zero. Thirdly, simple reasoning along these lines
suggests that the dynamics of 𝜉𝑃𝑒 and 𝜉𝑅𝑒 , as summarized by selection‑mutation
equilibrium loci in conditional strategy space, should be the same as in the UG
minigame (section 2.4). This will be conϐirmed by a Monte Carlo sensitivity



CHAPTER 2. USING MINIGAMES 34

analysis showing that the selection‑mutation equilibrium loci are as expected
irrespective of random variations in variables other than 𝜉𝑃𝑒 and 𝜉𝑅𝑒 .

It is trivial that for responders, 𝑒 is a best response in the conditional game
(and consequently in the full game) only when 𝜉𝑃𝑒 = 1. Appendix 1 contains a
proof that 𝑒 is a best response for proposers if and only if

𝜉𝑅𝑒 ≥ 𝑇(𝑒) ∶= 1
$ + 1 − 𝑒 . (2.5)

As in theminigame analysis this reϐlects aweighing up of the risk and reward of
offering less than 𝑒 when some responders might reject a lower offer. The con‑
dition follows speciϐically from a comparison of 𝜋𝑃(𝑒, ℰ) against 𝜋𝑃(𝑒 − 1, ℰ).
This single comparison turns out to be sufϐicient for establishing whether 𝑒
is a best response offer, because even lower offers imply progressively higher
probabilities of rejection, and the expected losses grow faster than the expected
gains as the offer is lowered. This result depends on responder frequencies 𝑥𝑅𝑖
being nonincreasing in 𝑖, a condition that the system has an inherent tendency
to establish and maintain because the expected payoff for responders is nonin‑
creasing in 𝑖 (see appendix 1 for details). The upshot is that we only need to
consider 𝜉𝑃𝑒 and 𝜉𝑅𝑒 to determine whether 𝑒 is a best response for responders
and proposers respectively.

Notice that these best response conditions, taken as equalities, are indiffer‑
ence conditions: if 𝜉𝑃𝑒 = 1 then all responder strategies in ℰ deliver the same
payoff, and if 𝜉𝑅𝑒 = 𝑇(𝑒), then𝜋𝑃(𝑒, ℰ) = 𝜋𝑃(𝑒−1, ℰ). Asmentioned previously
(section 2.4), and as is evident from (2.3), when the payoff gradient within a
group of strategies is low, selection will be effectively weak and mutation will
assert itself more strongly. The closer the indifference conditions are to being
met, i.e. the closer 𝜉𝑃𝑒 is to 1 for responders, and the closer 𝜉𝑅𝑒 to 𝑇(𝑒) for pro‑
posers, the smaller the payoff gradient between 𝑒 and its best alternative inℰ,19
which should be reϐlected in a dynamic equilibrium by a rest value of 𝜉𝑒 closer
to its mutation target (i.e. a more uniform distribution).

It will again be useful to consider a partial dynamic equilibrium, where the
rest condition (𝑑𝜉𝑖/𝑑𝑡 = 0) only needs to be true for one of the populations at
a time, while the other is systematically varied across its state space, resulting
in selection‑mutation equilibrium loci similar to those in ϐigures 2.1c and 2.1d.
Irrespective of other details of the proposer distribution, if 𝜉𝑃𝑒 = 0 (and held
ϐixed), no responders in ℰ would want to demand 𝑒, so 𝜉𝑅𝑒 will rapidly move
to and eventually rest at a very low level with only mutation keeping it slightly
away from zero. If 𝜉𝑃𝑒 = 1, all responders in ℰ get the same payoff, so selec‑
tion will have no effect and mutation will result in responders moving slowly

19Recall that𝜋(𝑖, ℰ) is a linear combination of payoffs of 𝑖 against strategies in ℰ, the weights
being the latter’s frequencies, so the payoff difference between two strategies will vary linearly
with opposite population frequencies.
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towards a uniform distribution. If 𝜉𝑅𝑒 = 1, so that all responders in ℰ demand 𝑒,
we can expect 𝜉𝑃𝑒 to come to rest very close to one (mutationwill keep it slightly
away from one) and if 𝜉𝑅𝑒 = 0, then 𝜉𝑃𝑒 will come to rest close to zero. A tran‑
sition therefore has to take place at some point as 𝜉𝑅𝑒 moves from one to zero,
and following earlier reasoning, this transition should be at 𝜉𝑅𝑒 = 𝑇(𝑒). Close
to this threshold, selection will be weak and mutation should push proposers
towards uniformity, inducing a “smooth” transition similar to the minigame.
These statements do not give precise values for the extremal rest points and
we do not know the precise curvature of the loci, but we have sufϐicient infor‑
mation to deduce that the shapes of the selection‑mutation equilibrium loci for
𝜉𝑃𝑒 and 𝜉𝑅𝑒 must qualitatively resemble those in the standalone minigame.

We should therefore expect evolutionary dynamics in a conditional game to
broadly follow the minigame’s dynamic analysis. It may be argued that, math‑
ematically, variations in conditional frequencies of strategies in ℰ other than
𝑒 may affect the dynamics of 𝜉𝑃𝑒 and 𝜉𝑅𝑒 , through their effects on 𝜋(ℰ, ℰ) and
𝜋(𝑒, ℰ), especially when 𝜉𝑒’s are low, and stability questions may hinge on sub‑
tle variations in weak forces, so even very small effects may matter. To test the
claim that the minigame analysis can be usefully applied to conditional games,
I conducted a Monte Carlo exercise using simulations of the full model. The
objective was to generate a large number of selection‑mutation equilibrium
points for one population at a time given random distributions for the other
population, thus tracing out “numerical” selection‑mutation loci.20 Apart from

20Here is a short description of the algorithm, startingwith the construction of the proposers’
selection‑mutation equilibrium locus. Assumewe know 𝑒. A randomvalue is drawn from a uni‑
formdistribution between0 and0.1, whichwill be the combined frequency of responder strate‑
gies outside ℰ. The frequencies for strategies outside ℰ are assigned by drawing values from a
Pareto distribution (with characteristic parameter randomly selected from a uniform distribu‑
tion between 0 and 10 for each simulation), and scaling them so that their combined frequency
matches the desired value. There is no particular justiϐication for this procedure other than
that it often produces “extreme” distributions highly skewed to one or a few of the strategies
and also sometimes fairly uniform distributions, so that the effects, if any, of variations in the
distribution should become apparent. Now, another random variable is drawn which will be
the conditional frequency of 𝑒, or 𝜉𝑅𝑒 . The latter is drawn from a uniform distribution between
zero and 1/𝑒 (for some simulations I also used a narrower distribution designed to get more
data points in regions of interest). The value cannot exceed 1/𝑒 since then it would then be
impossible to assign frequencies to demands lower than 𝑒 without breaking the requirement
that lower demands must have equal or higher frequency than that of 𝑒 (see Appendix 1). The
frequencies of the remaining strategies, for demands lower than 𝑒, are then determined in se‑
quence. For 𝑒 − 1, an allowable interval is determined, with the lower bound equal to 𝑥𝑅𝑒 and
the upper bound determined by the amount of unallocated frequency in the unit interval (again
keeping in mind the restriction that lower demandsmust have at least equal frequency). A uni‑
form random value is drawn from the allowable interval and assigned to 𝑥𝑅𝑒−1, and the process
is repeated for lower demands until the entire distribution has been determined. Having de‑
termined the responder distribution, it is held ϐixed while letting proposer frequencies evolve
normally according to the original full model speciϐication (2.1). (This is easy to do in the full
model by setting responder selection and mutation rates to zero.) When proposer frequencies
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graphically illustrating how 𝜉𝑃𝑒 determines the dynamics of 𝜉𝑅𝑒 , and vice versa,
this exercise is an effective sensitivity analysis: if there were signiϐicant effects
of variations in the opposite population conditional frequencies other than 𝜉𝑒 ,
it should show up as noise in the results.
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Figure 2.2: Selection‑mutation equilibrium for conditional frequencies
Notes: Results fromMonte Carlo simulation exercise. (a) shows ϐinal rest values for 𝜉𝑃7
given various random strategy distributions for responders, (b) shows ϐinal rest values
for 𝜉𝑅7 given various random strategy distributions for proposers. 𝛿𝑃 = 𝛿𝑅 = 0.1,
$ = 40 and 𝑒 = 7.

Figure 2.2 show the results for (a) 650 simulations for proposers, each time
holding the responder frequencydistribution constant, and (b)650 simulations
for responders, each timeholding theproposer frequencydistribution constant,
with 𝛿𝑃 = 𝛿𝑅 = 0.1, $ = 40 and 𝑒 = 7. Both graphs show clear relationships,
conϐirming that the main factor determining the value at which a conditional
frequency comes to rest is the corresponding conditional frequency in the op‑
posite population. There is very little noise in (a), indicating that, given 𝜉𝑅7 and
the restriction of decreasing frequencies in offers in ℰ, the remaining details of
stop evolving (I deem this to have occurred when the absolute difference in frequency from
one round to the next for no frequency in the model exceeds 1/108), we know that selection
andmutation is balanced and we can calculate the rest value of 𝜉𝑃𝑒 . This procedure is repeated
many times for different values of 𝜉𝑅𝑒 , thus tracing out the selection‑mutation equilibrium locus
for proposers.

The whole exercise is then repeated for responders, this time ϐixing 𝜉𝑃𝑒 at various values
and letting only responder frequencies evolve. The only difference is that since there is no
restriction on the frequencies of proposer strategies below 𝑒, they are simply drawn from a
Pareto distribution and scaled.
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the responder distribution hardly matters.21 The relationship for responders
in (b) is noisier, indicating that the details of the proposers’ conditional distri‑
bution apart from 7 matters to a somewhat greater extent, but the rest value
for 𝜉𝑅7 is nonetheless overwhelmingly driven by 𝜉𝑃7 .

We can also easily verify that the shapes of the curves in ϐigure 2.2 are what
we expected from our analysis above, particularly the locations of the extremal
points and the transition at 𝑇(7). The conditional frequencies behave approxi‑
mately as if they were in a standalone UG minigame, and our insights from the
minigame analysis may be applied to an equilibrium of the full game. Mutation
plays the expected role of moving the relative distributions towards uniformity
when selection is weak, thus smoothing the proposer’s locus close to 𝜉𝑅7 = 𝑇(7)
and the responder’s locus close to 𝜉𝑃7 = 1. However, compared to ϐigure 2.1d,
which has the same mutation and selection parameter values as these simula‑
tions, mutation appears much weaker. This is exactly what we would expect
from (2.4) given the presence of the factor |ℰ|/|𝒮|, which indicates that muta‑
tion in conditional frequencies is weaker than in the full model. By reference
to the GBS result that only the ratio of responder and proposer mutation rates
matter, the factor |ℰ|/|𝒮| should not affect the existence of an asymptotic at‑
tractor in the equilibrium because it affects proposers and responders alike.

2.7 How easily can an imperfect equilibrium be
stabilized?

For the parameter values used in the exercise above, the full model has a stable
imperfect equilibrium where an offer of 7 is made by proposers, indicated on
the graphs by the midpoint of the circles labelled B. At this point, where both
𝜉𝑃7 and 𝜉𝑅7 are at rest, the roles of selection andmutation to stabilize the equilib‑
rium are the same as in the standalone UGminigame: mutation pushes respon‑
ders upwards and proposers leftwards, while selection pushes in the opposite
directions. Respondermutationmust be strong enough to keepproposers from
being overly tempted to make lower offers, while proposer mutation must be
weak enough to not punish responders too harshly for high demands. If, for
example, the proposer mutation rate were increased, 𝜉𝑃7 will be pushed lower,
which is leftwards on the graph, which strengthens downwards responder se‑
lection, moving the system to the SPNE’s basin of attraction (refer to ϐigure
2.1b). We know from the minigame analysis that if the stable imperfect equi‑

21There is in fact a small amount of noise that is visible when zooming in (not shown) – the
relationship is not perfectly monotonic. Recall that a small fraction of proposers will play each
strategy due to mutation, so the details of the responders’ relative distribution below 7 will
slightly affect the average payoff to proposers, even if not affecting 𝜋𝑃(𝑒, ℰ). This affects the
strength of selection and therefore the rest value of 𝜉𝑃7 , but the effect is small because the mu‑
tation rate is low.
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librium exists, there should be three rest points in the space of the graphs, in‑
dicating that the “true” selection‑mutation equilibrium loci should cross three
times.22 Why, given the same selection and mutation rate parameters, or the
same 𝜙’s (see p. 27), is there a non‑SPNE asymptotic attractor in the full game
where 𝑒 = 7, but not for the minigame illustrated in ϐigure 2.1d?

Consider the two critical 𝜉𝑅7 thresholds indicated on ϐigure 2.2. The ϐirst,
𝑇(7) ≡ 1/($ + 1− 𝑒) = 1

34 , is determined by the gains and losses to proposers
of adjusting their offer downwards, as explained previously. In the vicinity of
𝑇(𝑒), proposer selection becomes relaxed, and the rightwards force is reduced.
Since this force is needed to counteract leftwardsmutation in order tomaintain
the equilibrium, it helps if this threshold is low, so that effective selection is
strong near the (potential) asymptotic attractor. In general terms, it is easier
to maintain an equilibrium in which proposers have much to lose by lowering
their offers. In the minigame, where $ = 4, and the high offer is 2, the potential
loss to offering lower is not so great as in the full game when the offer is 7 (and
$ = 40), which explains why in the minigame the high offer equilibrium is not
as easily stabilized as the equilibrium in the full game.

The second critical threshold is 1
7 , which is the mutation target for 𝜉𝑅7 . It is

determined by the shape of the mutational noise (assumed uniform here) and
by the number of strategies in the subgroup ℰ – the fewer there are, the higher
this threshold will be, since uniform mutation tends to push conditional fre‑
quencies towards equal shares. The further 𝜉𝑅7 is below this target, the stronger
the effective upwards mutation force will be, so to maintain an equilibrium, it
helps if there are fewer strategies in ℰ. Graphically, the lower the 𝑇(𝑒) horizon‑
tal “bar” and themore vertically stretched the responder locus (by a highmuta‑
tion target), the more likely it is that the two loci will cross three times instead
of once, and therefore a non‑SPNE asymptotic attractor will exist. For succes‑
sively lower‑offer equilibria, the mutation target 1

𝑒 moves upwards, while the
𝑇(𝑒) threshold moves downwards, thus both effects conspire to make it easier
for the selection‑mutation loci of the proposers and the responders to cross
thrice and therefore to stabilize a subgame imperfect equilibrium.

Selection and mutation rates are still relevant; for example it is possible to
stabilize an equilibrium with a modal offer of 9 by boosting the rate of muta‑
tion for responders or reducing the rate of mutation for proposers sufϐiciently.
However, this will not always be possible: if the 𝑇(𝑒) threshold were actually
higher than themutation target 1𝑒 threshold, no amount of respondermutation

22This is it not to suggest that the full game has only three rest points, since variation in
dimensions not shown in these graphs – speciϐically the relative distributions of frequencies
below 𝑒 – can lead to multiple other rest points. The vicinity of the bottom‑left rest point in
this space can be thought of as a “portal” leading to other dimensions containing their own rest
points. The “multiple valleys”metaphor of Binmore and Samuelson (1999) is also useful in this
regard.
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wouldmake the loci cross three times, so an asymptotic attractor can only exist
if,

1
$ + 1 − 𝑒 < 1

𝑒
𝑒 < $ + 1

2 (2.6)

which, if $ = 40, means that the highest offer equilibrium that can be stabi‑
lized by changing mutation and/or selection rates is 20 (which would require
extremely noisy responders relative to proposers).

2.8 Conclusion
Can a two‑dimensionalminigame analysis of the ultimatum game’s noisy evolu‑
tionary dynamics account for crucial aspects of the full game with a large num‑
ber of pure strategies? A naive approach that simply ignores the fact that the
full game has more than two strategies provides a loose analogy at best. In par‑
ticular, it is difϐicult to explain why there are stable imperfect equilibria in the
full game, because in the minigame, an essential part of the explanation is that
mutation keeps responder rejection of low offers at a high enough frequency
for the equilibrium to be maintained, but in the full game, the direct effect of
mutation on a strategy that would reject a lower offer was shown to lower its
frequency. A more careful approach, taking explicit account of the relationship
between the two‑dimensional minigame and the full game, however, gives the
more positive answer that the minigame does have much relevance for the full
game, though the relationship is not quite straightforward.

It was illustrated that, using an appropriate conditional frequency evolu‑
tionary analysis, in which mutation and selection ϐlows within a subgroup of
strategies are studied in isolation, the simple minigame explanation can be re‑
stored. A conditional frequency is the frequency with which an amount is se‑
lected (as offer or as demand) conditional on all higher amounts not having
been selected. The particular structure of the ultimatum game causes dynam‑
ics in this conditional strategy space to be approximately independent of higher
amount strategy frequencies when the full system is near an associated equi‑
librium, and the dynamics have the same shape as an ultimatum game with
a reduced strategy set. Finally, it is established that the dynamics of any par‑
ticular conditional strategy are almost entirely determined by the conditional
frequency of the corresponding strategy in the opposite population, and thus
that a two dimensional analysis based on the ultimatum minigame is feasible
and appropriate. The Monte Carlo sensitivity analysis in section 2.6 is particu‑
larly encouraging, strongly suggesting that the pair of conditional frequencies
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behaves the same as the two variables in a standalone minigame.23
In practical terms, a particular equilibrium offer can be maintained at a rel‑

ative frequency near 100% by the evolutionary system as long as the frequency
of the responder strategy that demands that same amount is kept above a crit‑
ical threshold (by mutation, directly and/or indirectly), but if the threshold is
breached proposers will lower their offers and the systemwill typically reach a
new equilibriumwith amodal offer which is the next lower amount in the strat‑
egy set. Given that the new offer is a lower amount, the new equilibrium will
be intrinsically easier to stabilize so may therefore be maintained for longer,
or even permanently, depending on evolutionary parameters. The minigame
analysis accurately describes the evolution of the two conditional frequencies
in this account.

By explicitly considering the relationship between the full ultimatum game,
with its manymoving parts and seemingly complicated dynamics, and a simpli‑
ϐied two‑dimensionalminigame analysis, a reasonable understanding is gained
of the interplay of critical forces that lead to the stabilization of imperfect equi‑
libria in the full game. A better understanding is also gained of the factors af‑
fecting the difϐiculty (i.e. the minimum required ratio of responder to proposer
mutation rates) of stabilizing anyparticular imperfect equilibrium. For this, the
graphical analysis based on selection‑mutation equilibrium loci proved useful.
For example, lower‑offer equilibria are easier to stabilize because this has the
effects of pulling down𝑇(𝑒) and pushing up themutation target for responders,
both of which will tend to make it easier for the two loci to cross three times
rather than only once.

The analysiswas based speciϐically on the ultimatum game ‑would the tech‑
niques developed in this chapter, particularly the use of conditional frequency
dynamics apply toother games? It seems that the essential featureof theultima‑
tumgame thatmade this fruitfulwas that, for both players, a particular strategy
𝑖 treats whole sets of opponent strategies, e.g. offers below 𝑖 for responders or
demands above 𝑖 for proposes, alike. Many types of bargaining and other games
with many strategies share such properties, so it may be worth exploring the
use of conditional frequency analysis more generally. It would also be worth‑
while to establishwhether this type of analysis could generalize to evolutionary
dynamics other than the replicator dynamics.

23An important caveat is that my interest was restricted to the question of the existence of
stable imperfect equilibria, thus I do not claim that theminigame analysis can account for all dy‑
namic features of the full ultimatum, particularlywhen the system is not near the characteristic
equilibrium of the conditional game in question.



Appendix

2.A Proposer’s best response
An important part of the justiϐication for a two‑dimensional analysis of the dy‑
namics of the full UG model relies on the fact that whether a particular strat‑
egy is a best response or not depends only on a single conditional strategy
frequency in the opposite population, i.e. 𝜉𝑃𝑒 determines whether 𝑒 is a best
response for responders and 𝜉𝑅𝑒 determines whether 𝑒 is a best response for
proposers. This appendix sets out to prove the latter proposition (i.e. for pro‑
posers).

The main theorem below therefore proves that 𝑒 is a conditional best re‑
sponse (i.e. best response within ℰ) if 𝜉𝑅𝑒 equals or exceeds a particular thresh‑
old 𝑇(𝑒) ≡ 1/($ + 1 − 𝑒), which means 𝑒 is an overall best response for pro‑
posers if𝑋𝑅ℰ ≈ 1. But the theoremdepends on a aprerequisite condition regard‑
ing the distribution of responder frequencies, namely that they are nonincreas‑
ing in the demanded amount; so before the main theorem is presented, it is
necessary to consider the reasonableness of the prerequisite condition, which
follows by means of a pair of lemmas. The prerequisite condition is speciϐied
as,

𝑥𝑅𝑖 ≥ 𝑥𝑅𝑗 ∀ 𝑖 < 𝑗 (2.7)

Lemma1. If condition (2.7) holds, itwill bemaintained forever by the fullmodel’s
dynamics (??).

Proof. Given any two demands, the expected payoff to a responder making the
higher demand can be lower or equal, but never higher than the expected pay‑
off to the lower demand, because a higher demand could potentially lead to
rejection and a payoff of zero:

𝜋𝑅(𝑖, 𝒮) ≥ 𝜋𝑅(𝑗, 𝒮) ∀ 𝑖 < 𝑗 (2.8)

From (2.1),
𝑑(𝑥𝑖 − 𝑥𝑗)

𝑑𝑡 = Δ ൣ𝑥𝑖(𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮)) − 𝑥𝑗(𝜋(𝑗, 𝒮) − 𝜋(𝒮, 𝒮))൧ + 𝛿(𝑥𝑗 − 𝑥𝑖).
(2.9)

41
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For any i < j, condition (2.7) requires that either 𝑥𝑖 = 𝑥𝑗 or 𝑥𝑖 > 𝑥𝑗 . In the
case that 𝑥𝑖 = 𝑥𝑗 , it can be veriϐied that the ϐirst term (selection) of the above
equation will be nonnegative given (2.8), and the second term (mutation) will
be zero, so 𝑑(𝑥𝑖−𝑥𝑗)/𝑑𝑡 ≥ 0 and (2.7) will be maintained. In the case that 𝑥𝑖 >
𝑥𝑗 , it is possible that 𝑑(𝑥𝑖−𝑥𝑗)/𝑑𝑡 < 0, inwhich case 𝑑𝑥𝑗/𝑑𝑡will exceed 𝑑𝑥𝑖/𝑑𝑡.
However, given continuousdynamics, this cannot result in a statewhere𝑥𝑖 < 𝑥𝑗 ,
because for this to occur, the system would have to pass through a state where
𝑥𝑖 = 𝑥𝑗 , at which point we would again have 𝑑(𝑥𝑖 − 𝑥𝑗)/𝑑𝑡 ≥ 0.

It is clear that Lemma 1 always applies when the starting distribution of re‑
sponder frequencies is uniform (𝑥𝑖 = 𝑥𝑗), so it is possible to justify condition
(2.7) by assuming a uniform starting distribution. However, this is unnecessar‑
ily restrictive, and the condition may have relevance regardless of the starting
distribution. Given our interest in the existence of stable imperfect equilibria
of the model, I prefer an alternative justiϐication, expressed in the following
lemma.

Lemma 2. Condition (2.7) holds at any rest point of the full model’s dynamics
(2.1).

Proof. Assume condition (2.7) does not hold, so that there is some 𝑖, 𝑗 in 𝒮 such
that 𝑖 < 𝑗 and 𝑥𝑅𝑖 < 𝑥𝑅𝑗 . Using a similar procedure as was used to derive (2.3),
we obtain,

𝑑 ቈ 𝑥𝑖
𝑥𝑖 + 𝑥𝑗



𝑑𝑡 = Δ 𝑥𝑖
𝑥𝑖 + 𝑥𝑗

(𝜋(𝑖, 𝒮) − 𝜋({𝑖, 𝑗}, 𝒮)) + 𝛿 2
|𝒮|

1
𝑥𝑖 + 𝑥𝑗

ቆ12 −
𝑥𝑖

𝑥𝑖 + 𝑥𝑗
ቇ ,

(2.10)
where 𝜋({𝑖, 𝑗}, 𝒮) is the weighted average payoff to 𝑖 and 𝑗. The ϐirst term (se‑
lection) will be nonnegative because (2.8) implies 𝜋(𝑖, 𝒮) ≥ 𝜋({𝑖, 𝑗}, 𝒮), while
the second term (mutation) will be strictly positive if 𝑥𝑖 < 𝑥𝑗 (assuming 𝛿 > 0).
Therefore, if condition (2.7) does not hold, 𝑥𝑅𝑖 ’s share of 𝑥𝑅𝑖 +𝑥𝑅𝑗 will be strictly
increasing over time, which implies that the system cannot be at rest unless
condition (2.7) is true.

This effectively shows that any deviations from condition (2.7) can only
arise from selecting a starting position in which it does not apply, and that such
deviation will be temporary.24 Nevertheless, such a temporary deviation could

24The tendency to restore the condition is actually somewhat understated by these lemmas,
since in practice proposer mutation means the inequality in (2.8) will be strict, so that if the
condition does not hold, both selection and mutation’s effects in (2.10) will be strictly positive,
and 𝑥𝑅𝑖 = 𝑥𝑅𝑗 ⟹ 𝑑(𝑥𝑅𝑖 −𝑥𝑅𝑗 )/𝑑𝑡 > 0, suggesting that condition (2.7) must apply not only “at”
but also “near” rest points. In simulations, the condition tends to be established quickly when
it does not hold and it is maintained forever when it holds.
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mean that the theorem below is temporarily inapplicable, which could conceiv‑
ably cause the system to skip out of the general vicinity of some dynamic equi‑
librium towards another, or otherwise affect the system’s trajectory, but it does
not affect the existence of any dynamic equilibrium.
Theorem 1. Assume (2.7) is true. If and only if 𝜉𝑅𝑒 ≥ 𝑇(𝑒) ≡ 1/($ + 1 − 𝑒),
then 𝑒 is a conditional best response for proposers within ℰ, meaning there is no
alternative in ℰ that would give proposers a higher expected payoff.

Proof. Let 𝑞𝑖 be the conditional frequency of responders (i.e. the proportion of
responders following strategies in ℰ) that would reject an offer of 𝑖 or smaller.
In general, 𝑞𝑖 = 𝑞𝑖+1 + 𝜉𝑅𝑖+1, and in particular, 𝑞𝑒−1 = 𝜉𝑅𝑒 since 𝑞𝑒 = 0. For 𝑒
to be a conditional best response for proposers, it is necessary for 𝑒 to get the
same or better payoff as any other strategy in the subset ℰ:

𝜋𝑃(𝑒, 𝒮) ≥ 𝜋𝑃(𝑖, 𝒮)
𝑋𝑅ℰ [$ − 𝑒] ≥ 𝑋𝑅ℰ [(1 − 𝑞𝑖)($ − 𝑖)]

𝑒 − 𝑖 ≤ 𝑞𝑖($ − 𝑖) ∀ 𝑖 < 𝑒 (2.11)
where 𝐺(𝑖) ≡ 𝑒 − 𝑖 can be interpreted as the gain in offering 𝑖 rather than 𝑒 if
𝑖 is accepted and 𝐿(𝑖) ≡ 𝑞𝑖($ − 𝑖) is the expected loss due to rejection when 𝑖
is offered. Notice that 𝑋𝑅ℰ cancels out, because responders that demand higher
than 𝑒 will reject any offer in ℰ and therefore reduce payoffs to all proposers
playing strategies in ℰ equiproportionally. A necessary condition for (2.11) to
be satisϐied is that it be satisϐied for 𝑖 = 𝑒 − 1, which requires that

𝜉𝑅𝑒 ≥ 𝑇(𝑒) (2.12)
However, (2.12) is in fact a sufϔicient condition for (2.11) to be satisϐied for all
𝑖 < 𝑒. To show this, it will be sufϐicient to demonstrate that 𝐿(𝑖) increases faster
than 𝐺(𝑖) as 𝑖 is decreased, so that (2.11) will continue to hold for all 𝑖 < 𝑒 − 1
if it holds for 𝑖 = 𝑒 − 1:

𝐺(𝑖 − 1) − 𝐺(𝑖) = 1
𝐿(𝑖 − 1) − 𝐿(𝑖) = 𝑞𝑖−1($ + 1 − 𝑖) − 𝑞𝑖($ − 𝑖)

= 𝑞𝑖($ + 1 − 𝑖) + 𝜉𝑅𝑖 ($ + 1 − 𝑖) − 𝑞𝑖($ − 𝑖)
= 𝑞𝑖 + 𝜉𝑅𝑖 ($ + 1 − 𝑖)

From (2.12) we have 𝜉𝑅𝑒 ($ + 1− 𝑒) ≥ 1, but since 𝑒 > 𝑖 and 𝑥𝑅𝑖 ≥ 𝑥𝑅𝑒 according
to (2.7),

1 ≤ 𝜉𝑅𝑒 ($ + 1 − 𝑒) < 𝜉𝑅𝑖 ($ + 1 − 𝑖) < 𝑞𝑖 + 𝜉𝑅𝑖 ($ + 1 − 𝑖)
Therefore (2.12) implies 𝐿(𝑖 − 1) − 𝐿(𝑖) > 𝐺(𝑖 − 1) − 𝐺(𝑖) for all 𝑖 < 𝑒 and
therefore (2.12) implies (2.11) as well.25

25Condition (2.7) is not strictly necessary for this conclusion. The conclusionwould still hold
if ($ + 1 − 𝑖)/($ + 1 − 𝑒) > 𝜉𝑅𝑒 /𝜉𝑅𝑖 ∀ 𝑖 < 𝑒, or even failing that, if 𝑞𝑖 is large enough.
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Using the theorem, if 𝜉𝑅𝑒 ≥ 𝑇(𝑒) and it is also given that𝑋𝑅ℰ ≈ 1, then 𝑒must
be an overall best response for proposers.

2.B Directed Mutation
Throughout the chapter, I have assumed thatmutationwasuniform in the sense
that an individual changing her strategy due to mutation, either due to “trying
something new” or “making a mistake”, selects her new strategy so that the
probability that each particular new strategy is chosen is independent of her
old strategy and also independent of the new strategy. In differentways, Harms
(1997), Zhang (2013) andAkdeniz andVanVeelen (2023) show that the central
GBS result of stable imperfect equilibria can be sensitive to the precise way in
which mutation is modelled. Suppose, following GBS (p. 68), that the probabil‑
ity of a particular new strategy 𝑗 being chosen is 𝜓𝑗 . They report the following
simulation results: a) putting relatively more weight on offers and responses
near zero leads to outcomes in which responders get less than 20% of the pie
(i.e. less than for proportional mutation), b) putting more weight on “some‑
what higher” offers leads to outcomes in which the responders get more than
20%of the pie; however, c) changing the values of𝜓𝑗 for proposers and respon‑
ders that are attached to “relatively high offers has virtually no effect on the
outcome”, for example putting high weight on𝜓20 with the remaining values of
𝜓𝑗 remaining equal to one another had “almost no impact” on the results. Their
explanation is that such high‑amount strategies earn such a low payoff that in‑
sufϐicient probability accumulates on such offers to affect the ϐinal results.

The conditional frequencymodel in this chapter canhelp shed light on these
results by showing that it matters whether weight is shifted within ℰ or be‑
tween ℰ and the rest of 𝒮. If we replace 1

|𝒮| in (2.1) with𝜓𝑖 , then (2.3) becomes,

𝑑𝜉𝑖
𝑑𝑡 = Δ𝜉𝑖(𝜋(𝑖, 𝒮) − 𝜋(ℰ, 𝒮)) + 𝛿𝜓ℰ

1
𝑋ℰ

ቆ𝜓𝑖
𝜓ℰ

− 𝜉𝑖ቇ (2.13)

where𝜓ℰ = ∑𝑖∈ℰ 𝜓𝑖 . This shows that changing the shareof totalmutation going
to strategies in ℰ will modify the effective rate of mutation on the conditional
frequency, which will tend tomake the locus of selection‑mutation equilibrium
curvemore smoothly. But changing the relative sharewithinℰ going to 𝑒will in‑
stead change themutation target, whichwill have the effect of vertically stretch‑
ing the locus of selection‑mutation equilibrium in the case of responders (refer
to ϐigure 2.2).

Consider what would happen in the case of a “norm” strategy that would be
picked with a greater probability than others when an individual mutates. Say
the norm is outside the current equilibrium, e.g. an offer of 20 when 𝑒 < 10.
Assign a value of 12 +

1
80 to 𝜓20 and

1
80 to all other 𝜓𝑗 ’s. Compared to uniform
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mutation, this does not change the mutation target 𝜓𝑒/𝜓ℰ , but it does lower
the effective rate of mutation. If this norm (a) only applied to proposers, we
would expect the equilibria 𝑒 < 10 to be more easily stabilized, while if (b) the
norm applied only to responders, we would expect these equilibria to be less
easily stabilized, and if (c) the norm applied to both proposers and responders,
we would not expect any change as the effective ratio of proposer and respon‑
der mutation rates would be unchanged. Simulations of the model with these
mutation probabilities implemented, with 𝛿𝑃 = 𝛿𝑅 = 0.1 and uniform starting
frequencies as before, come to a ϐinal rest at (a) an offer of 9, (b) an offer of 6 and
(c) an offer of 7, respectively, conϐirming the predictions (recall that the origi‑
nal model stabilizes at an offer of 7 for these parameter values). To interpret
these results, it is best to regard the “norm” of 20 as no more than a distraction
that makes the mutation that really matters, i.e. of relative frequencies within
ℰ, effectively slower, but since relative mutation rates matter, distracting one
population more than the other can change the result. This analysis suggests
that the role of “bias” in mutation to stabilize high‑offer equilibria is not quite
as simple as increasing the average offer and demand above the lowest possible
values, as suggested by Akdeniz and Van Veelen (2023, p. 579).

Next, we can adjust 𝜓𝑖/𝜓ℰ while leaving 𝜓ℰ unchanged. For 𝑒 = 8, let 𝜓8
= 1

10 , let 𝜓𝑖 =
1
70 for 𝑖 < 8 and let 𝜓𝑖 =

1
40 for 𝑖 > 8. When applied to ei‑

ther proposers or responders, this stabilizes the equilibrium with modal offer
of 8 (which is not stable with uniform mutation) easily in a simulation. For re‑
sponders, this vertically stretches the selection‑mutation equilibrium locus as
explained previously. For proposers, raising themutation target will effectively
weaken mutation, given that 𝜉𝑃𝑒 ≈ 1 in an equilibrium characterized by offers
of 𝑒, so the target comes closer to the actual value.



Chapter 3

Stochastic Learning and Emulation
in the Ultimatum Game

3.1 Introduction
Evolutionary game theory canbeunderstood as the application of insights from
the study of the dynamic processes of biological reproduction and adaptation
to human behaviour. When humans do not have perfect information or under‑
standing of the decisions they face, their behaviour is thought to derive, at least
in part, from habit and rule‑of‑thumb (Mailath, 1998, p. 1349), thus they ex‑
hibitmyopia and inertiawhile slowly learning to behavemore optimally. A difϐi‑
cult question is whether the evolutionary models that have been employed are
appropriate to model human decision‑making processes. Models are always
imperfect and simpliϐied representations, but the link between evolution and
decision‑making can be somewhat loose and there is a natural tension between
evolution, which applies to populations in aggregate and the standard method‑
ology of economics which is focused on individual decisions in a particular con‑
text. There have therefore been initiatives to build more explicit “microfoun‑
dations” for aggregate‑level evolutionary models, which this chapter aims to
contribute to.

The need for a concrete and defensible interpretation of a model at indi‑
vidual actor level is especially important when the outcomes are interesting,
counterintuitive or sensitive to modelling parameters or variation in speciϐica‑
tion. A prime example is the ultimatum game, where GBS ϐind that, in a model
based on the replicator dynamics with noise/mutation, the system can settle
at evolutionary stable states far from the classical subgame‑perfect Nash equi‑
librium (SPNE).1 Their results show that responders would irrationally reject

1The same basic result is obtained in Binmore and Samuelson (1994) under a different ver‑
sion of the replicator dynamics, the “discrete” or “adjusted” replicator dynamics introduced by
Maynard Smith (1982). I will discuss this version along the way, but my main concern will be
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positive offers from proposers if they are too low, and proposers consequently
make relatively fair offers (which are then accepted). Evolution fails to push the
responders towards fully rational behaviour, which would be to accept all pos‑
itive offers. While the general result of stable non‑subgame‑perfect equilibria
holds for a range of model parameters, the stability of a particular equilibrium
may require responders to be more “noisy” than proposers, and a particular
equilibrium may be stable under the standard continuous‑form replicator dy‑
namics but not under an alternative “discrete” version of the replicator dynam‑
ics. A satisfactory evaluation of the signiϐicance of these factors has not yet been
provided in the literature.

What is the signiϐicance of the GBS result? Any answer to this question,
whether based on empirical validation or other criteria, must start from a full
understanding of what the theory implies, or can imply, at the level of the indi‑
vidual actor. The replicator dynamics is a mathematical representation of Dar‑
win’s theory of natural selection where game payoffs are equated directly with
the number of surviving offspring, i.e. biological ϔitness. The replicator dynam‑
ics does not directly purport to describe learning behaviour of active decision
makers (Sandholm, 2020, p. 574), but, over the years, evolutionary game theo‑
rists have discovered that the replicator dynamics equations can followmathe‑
matically from a variety of alternativemodels more suited to economists’ focus
on behaviour as directed, individual choices. Indeed, GBS provide such amodel
in their 1995 paper (p. 85), explicitlymotivated by the need to justify interest in
the replicator dynamics. Their model assumes that agents change their strate‑
gies to a random alternative when payoffs fail to meet aspiration levels, which
is drawn from a uniform random distribution.

This interpretation is well‑suited to studying interactive learning by bound‑
edly rational agents, but I will argue that it is less appropriate if one wishes to
explore thebroader historical context of cultural evolution inwhich entrenched
behavioural norms and social preferences could have developed. In this chap‑
ter, I match the aggregate deterministic GBS model with a simple stochastic
individual‑level model, similar to a model in Weibull (1995, p. 158), which is
based on imitation of social peers. Here, agents have a degree of sensitivity to
payoffs of others when deciding who to imitate, unlike the random‑aspiration‑
level model where this decision is made blindly. In my model, agents choose
to imitate at random times according to a Poisson process at a rate common to
all agents in the population. When it is time to choose a new strategy, agents
still choose random individuals from the population to imitate, but the choice
is now weighted by expected payoffs of the target strategies, so better strate‑
gies are more likely to be imitated. This is justiϐied by the notion that agents
are motivated to choose strategies with higher payoffs, but are constrained by
noisy information about payoffs, and possibly also by social constraints.
speciϐically with the result as reported in the GBS paper.
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The model can be specialized either to the standard (“continuous”) or the
adjusted (also called “Maynard Smith” or “discrete”) versions of the replicator
dynamics by adjusting time step and revision rate parameters. An important
result shown bymy analysis is that the two versions of the replicator dynamics
have quite different implications for individual selection and mutation rates –
in the continuous version, selection rates are proportional to mean payoffs for
the population while for the discrete version the selection rate is completely
exogenous. This result recalls Maynard Smith (1982, p. 183), who, upon intro‑
ducing the discrete version of the replicator dynamics, immediately shows that
the continuous version can be obtained from it simply by multiplying by mean
payoff. The implication in the UG based on the standard replicator dynamics is
that individuals in the population of proposers “naturally” learn at a faster rate
than individuals in the population of responders, even with the same selection
rate parameters in both equations, due to the differences in mean payoff be‑
tween the two populations.

This challenges (as far as I am aware, for the ϐirst time) a justiϐication made
by GBS for an assumption of a larger selection rate parameter for proposers rel‑
ative to responders, namely that proposers have potentially more to gain from
switching than responders. In light of the interpretation provided by my imi‑
tation model, such an asymmetric treatment of the selection rates in the two
populations appear superϐluous – learning for proposers is in fact now doubly
boosted relative to responders. The asymmetric selection rate parameters are
not essential for obtaining stable non‑subgame‑perfect evolutionary equilibria,
but they do sharpen the results and stabilize certain equilibria (those with rel‑
atively more equal divisions between proposers and responders) than would
otherwise be the case. The analysis furthermore provides a clear understand‑
ing forwhy theGBS result does not emerge as strongly in the adjusted / discrete
version of the replicator dynamics, which Binmore and Samuelson (1994) ap‑
ply to the ultimatum game in an earlier paper.

The stochastic individual learningmodel leads to a further important impli‑
cation that challenges the relevance of the GBS result. Deterministic aggregate
dynamics models are invariably based on the idea of large populations. But if
real populations are not inϐinite, stochastic effects at individual level can have
signiϐicant effects at aggregate level, instead of cancelling out as they would in
a truly inϐinite population. In this case, aggregate model cannot be regarded as
an adequate representation of the situation envisaged as there may be stochas‑
tic trends and reversals that give very different results compared to the mean
aggregate dynamics, especially where stability of a fragile equilibrium is con‑
cerned. Most researchers apply the idea of a law of large numbers informally
or implicitly, while Boylan (1995) and Sandholm (2010, chapter 10) prove that
the procedure is indeedmathematically valid in the limit for large enough ϐinite
populations under certain conditions. However, it remains difϐicult to under‑
stand the practical signiϐicance of the assumption in a speciϐic application like
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the ultimatum game. I therefore conduct an agent‑based simulation of the imi‑
tation learningmodel which shows concretely that, in the case of a rather sensi‑
tive result like that of GBS, population sizeswell in excess of amillion agents per
population are required before the results reliably resemble the predictions of
the deterministic model. This suggests that for reasonable population sizes ap‑
plicable to an interpretation of cultural evolution, the GBS result will not hold –
instead, the model will lead to the SPNE or a result close to it.

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3
review theGBSmodel and result. Section3.4develops the stochastic‑individual‑
level learning/imitation model. Section 3.5 considers the question of selection
rates and interpretational differences between the continuous and discrete ver‑
sions of the replicator dynamics. Section 3.6 details the agent‑based simulation
of the imitation model and presents results. The conclusion offers an assess‑
ment that the GBS result remains theoretically important, but that it is unlikely
to be directly discernible in experimental data.

3.2 The Gale, Binmore and Samuelson result
In the ultimatum game, there are two players, the proposer and the responder.
The proposer is asked to divide a certain ϐixed amount of money between her‑
self and the responder. The responder can then choose to either accept or reject
the proposal. If the responder accepts, both participants receive the proposed
amounts, but if the responder rejects, neither party receives anything. The
game ends after one such interaction. GBS model a speciϐic scenario where the
twoplayersmust split an amount of 40, with only integer offers in𝒮 = [1, 40] =
{1, 2, ..., 40} allowed (higher offers representing a higher amount offered to the
responder). The proposer’s strategy is simply the offer amount, and the respon‑
der’s strategy is speciϐied as the minimum acceptable offer (henceforth called
“demand”).2 This results in forty Nash equilibria in pure strategies,3 of which
only one is subgame perfect, namely (1, 1), i.e. the lowest possible offer and
demands.

Following GBS, I will ignore all stochastic effects related to player match‑
ing, so players are effectively “playing the ϐield” throughout this chapter. The
payoff for each strategy at a point in time, 𝜋𝑖 , is thus deϐined as the expected
payoff a player using strategy 𝑖would obtain if pairedwith a randomly selected
player from the opposite population, given the current strategy frequency dis‑

2This assumes that a responder who accepts a certain offer will also accept all higher offers
and a responder who rejects a certain offer will also reject all lower offers.

3Each combination of offer and demand of the same amount represents a Nash equilibrium,
because given that 𝑖 is the minimum acceptable offer, 𝑖 is the optimal proposal and given that 𝑖
is proposed, the responder can do no better than accepting a minimum of 𝑖.
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tribution.4
A standard continuous replicator equation is applied to each of the two pop‑

ulations: the rate of change over time 𝑡 in the fraction of the population adopt‑
ing strategy 𝑖 is equal to 𝑑𝑥𝑖/𝑑𝑡 = 𝑥𝑖(𝜋𝑖 − 𝜋) where 𝑥𝑖 is the current fraction
of the population adopting strategy 𝑖 and 𝜋 = ∑𝑖∈𝒮 𝑥𝑖𝜋𝑖 is the current average
expected payoff in the population. It can be seen that strategies that earn an ex‑
pected payoff higher than the average payoff will tend to increase their share in
the population and strategies earning expected payoffs below the average will
be adopted by a decreasing fraction of the population.

Given this set up, every one of the forty pure strategy Nash equilibria is a
rest point of the dynamic system, and GBS show that many of them are also
asymptotically stable local attractors. A simulation of this system with a uni‑
form initial distribution of strategies converges to a state where all proposers
make an offer of 9, and all responders accept this offer (some also accept lower
offers). But, they argue, this in itself does not make a strong argument against
the subgame‑perfect prediction, because in such a state, evolutionary pressure
against weakly dominated strategies, i.e. responders who would reject low
offers, has been “artiϐicially” removed (GBS, p. 61). They therefore introduce
noise, or mutation, into the dynamics, to “test the rationality” of weakly dom‑
inated strategies and prevent the system from getting stuck simply because
some strategies have been effectively removed from the population.5 Mutation
entails a small fraction of agents, 𝛿, erroneously adopting the wrong strategy
(or a strategy adapted to a different game) instead of the one mandated by the
simple replicator dynamics. The authors choose to let each agent committing
an error choose from a uniform distribution of strategies in 𝒮 = [1, 40] so that
the probability that a particular erroneous strategy is chosen is 1

|𝒮| =
1
40 . The

“noisy replicator dynamic” equations making up their model are therefore,6

𝑑𝑥𝑖
𝑑𝑡 = Δ𝑥𝑖(𝜋𝑖 − 𝜋) + 𝛿 ቀ 1

40 − 𝑥𝑖ቁ , (3.1)
4To save space, I do not show population indicators and write only one equation instead of

two whenever possible.
5This would also in principle remove the possibility of the system reaching a state where

some strategies that would at this point be a best response have become extinct through low
payoffs in the past. The idea of low‑probability “mistakes” undoing some Nash equilibria was
also the original motivation for Selten’s (1975) trembling hand perfect equilibrium: given that
every choice in a game ismadewith somepositiveprobability ifmistakes canoccur, agentsmust
choose rational behaviour also at off‑equilibrium decision nodes (Van Damme, 1991, p. 10–
11). See also Young (1996, p. 109–111) who explains how allowing for errors in actions can
cause a dynamic system not to have any absorbing states. In GBS, this does not occur due to
the deterministic nature of the added noise, representing expected aggregate effects, in which
combinations of highly unlikely errors is not possible. This issue is addressed in section 3.6.

6Proposer and responder (sub‑)populations are modelled separately, each population with
its own 𝛿 (𝛿𝑃 and 𝛿𝑅 below), giving a total of eighty differential equations for the eighty fre‑
quencies in the model.
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where Δ is the selection rate, equal to (1 − 𝛿) in the GBS model.7
Simulation of these equations8 then show that, starting from uniform ini‑

tial distributions of strategies, the system converges to some outcome that de‑
pends on themutation parameter 𝛿, also called themutation rate, for each pop‑
ulation. If the mutation rate for the responders is sufϐiciently small relative to
the mutation rate for the proposers, the subgame‑perfect equilibrium appears.
But if responders are at least as noisy as proposers, the system never reaches
the subgame‑perfect outcome. Instead, a state is reached where almost all pro‑
posers (apart from a small fraction due to noise/mutation) offer some modal
amount, between 7 and 9, depending on parameter values. Responders follow
a mix of strategies but approximately all (apart from a small fraction due to
noise/mutations) demands are at or below the modal offer so approximately
all offers are accepted.

GBS (p. 75)make use of a simpliϐiedminigame analysis to explain why their
result is obtained. The main part of the explanation is that when proposers
learn quickly to make acceptable offers, due to strong incentives, responders
have little incentive to learn to accept low offers, because they see very few
low offers so suffer only a slight negative consequence from choosing strate‑
gies that would reject low offers. The role of mutation is not to hammer the
system towards a non‑subgame‑perfect equilibrium,9 but to apply a subtle bias
to a knife‑edge balance scenario. In fact, stable non‑subgame‑perfect equilibria
appear even when mutation rates are vanishingly small in the GBS model.

7Notice that mutation always tends to bring the frequency of a strategy towards 1/40, its
“equitable share” given auniformmutationdistribution. Note also thatwhile settingΔ = (1−𝛿)
seemingly provides a neat interpretation, that a fraction 𝛿 of agentsmisreads the game and the
remaining (1 − 𝛿) selects according to the replicator equation, there is no necessary link be‑
tween the selection and mutation rates. They can also be regarded as independent continuous
processes: over a small time interval 𝑑𝑡, a fraction 𝑑𝑡Δ changes according to selection dynam‑
ics and an independent fraction 𝑑𝑡𝛿 changes according to mutation dynamics. Setting Δ to
some other value, e.g. 1, would not mean that the value of ∑𝑖 𝑥𝑖 would deviate from unity over
time. For a more general replicator‑mutator equation explicitly linking replication and muta‑
tion see Page and Nowak (2002, p. 94).

8To simulate themodel, GBS discretize the continuous noisy replicator dynamics as follows:
𝑥𝑖(𝑡 + 𝜏) − 𝑥𝑖(𝑡) = 𝜏 ቂΔ𝑥𝑖(𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮)) + 𝛿( 1

40 − 𝑥𝑖)ቃ, where 𝜏 = 1
100 . Experimenta‑

tion with smaller values conϐirmed that this provides a close approximation to the differential
equation.

9By contrast, Rand et al. (2013) obtain relatively equal money divisions from an evolution‑
ary model that depends on a large mutation rate and a small selection rate. This seems un‑
interesting to economists working from the premise that human behaviour is generally goal‑
oriented.
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3.3 Why the GBS result is interesting
The GBS result is interesting, ϐirstly, because it is counterintuitive from a theo‑
retical perspective. Onewould expect every rest point in the noisy evolutionary
game that is not subgame perfect to be unstable. This is because the presence
of all possible offers by proposers, even at low frequencies, should offer an in‑
centive for responders with relatively high demands to adopt lower demands.
The GBS result is important because it presents a challenge to the relevance
of one of the most important solution concepts in classical game theory, the
subgame‑perfect Nash equilibrium. Underlying this is the broad notion that
evolutionary models can serve as justiϐication for the central assumption of ra‑
tional behaviour in economic models (Mailath, 1998).

A second reason the GBS result is interesting is because it seems to provide
an explanation for the voluminous experimental data showing that laboratory
subjects do not play the SPNE (Camerer and Thaler, 1995, p. 210). Experimen‑
tal researchers have not always been enthusiastic about evolutionary or learn‑
ing explanations for UG results.10 There are two difϐiculties. The ϐirst is that
there is an apparent conϐlict between the bounded rationality implicit in evolu‑
tionary models and the dominant approach in experimental economics, which
is based on the assumption of orthodox utility maximisation, allowing labora‑
tory results to be interpreted as reϐlecting social, or other‑regarding, prefer‑
ences.11 The modern view, supported by numerous empirical studies, is that
responders in the UG experience positive utility when they punish proposers
who violate fairness norms (Fehr and Schmidt, 2006, p. 630). A common argu‑
ment is that the assumption of rational behaviour is justiϐied because the the
situation facing responders in the UG is just too simple for them to reject pos‑
itive offers merely due to lack of understanding the game (e.g. Camerer and
Thaler, 1995, p. 210, Fehr and Schmidt, 2006, p. 617,628). Secondly, there are
robust features of the empirical data that cannot easily be explained bymodels
populated by boundedly‑rational, adaptive agents who care only about income.
A good example is that responders show much higher acceptance rates when
they are informed a low offer they received was generated by a computer (e.g.
Sanfey et al., 2003).

Nevertheless, a smaller number of experimental researchers have found
some evidence of learning taking place over successive rounds of play by ex‑
perimental subjects (e.g. Slonim and Roth, 1998, List and Cherry, 2000, Cooper
and Dutcher, 2011). Proposer behaviour tends to change over time towards
income‑maximizing offers (Cooper and Dutcher, 2011, p. 540). Responders

10The GBSmodel is often discussed in conjunction with Roth and Erev (1995) who present a
model of reinforcement learning that yields generally similar results and implications for exper‑
imental game theory. Given my research’s aim, the discussion will be restricted to the speciϐic
relevance of the GBS model.

11Cooper and Kagel (2016) provide a literature review.
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also adapt, but more slowly, and generally in the direction of higher acceptance
rates (e.g. List and Cherry, 2000, Winter and Zamir, 2005). The mere fact that
proposers learn faster than responders is a key feature of the GBS model. But
Cooper and Dutcher (2011) raise a problem, namely that human responders
appear to learn to reject very low offers with higher frequency in later rounds,
which could not happen in a learning model if rejections can only reduce util‑
ity.12 Cooper and Kagel (2016, p. 240) suggest there is a need for models that
combine elements of learning and other‑regarding preferences.

A third reason the GBS result is interesting is that it could give some in‑
sights about the cultural and/or biological evolutionary processes that may
have given rise, over longer time‑spans, to behavioural traits, social norms and
even preferences relevant to real‑life ultimatum and related bargaining and
other social interactions. We want to knowmore than simply that people have
other‑regarding preferences –wewant to understandwhy they do (Güth, 1995,
p. 342).13 GBS (p. 70) argue that the social norms triggered in the short term
by laboratory experiments can be presumed to have evolved in “real‑life bar‑
gaining situations that are superϐicially similar to the ultimatum game in some
respects” and that “we must therefore examine long‑run behavior in these ex‑
ternal situations for the origin of the norms that guide short‑run behavior in
laboratory experiments on the Ultimatum Game”. But such real‑life bargaining
situations would hardly ever be free of future consequences – repetition, repu‑
tation and social status all matter in everyday life, so the norms are unlikely to
be adapted to the ultimatum game as played in a typical experimental setting.
The work of Henrich et al. (2005), who studied UG behaviour among subjects
drawn from 15 different small‑scale societies with richly diverse social prac‑
tices between them, gives strong support to the notion that norms brought into
the laboratory developed as a result of experience in real‑life social interactions
applicable to the different societies. These authors (p. 812) also point to longer‑
term genetic and cultural evolutionary processes as the likely ultimate source

12The effect is quite small and statistical signiϐicance is only obtained through the use of com‑
bined data from numerous studies.

13In an application of the indirect evolutionary approach, according towhich it is preferences
that evolve rather than behaviour, Huck and Oechssler (1999) found that preferences in the UG
can evolve that give rise to behaviour similar to those observed in experimental data. However,
these results rely on the speciϐic assumptions such as that the population is small and that
agents can act in both roles, so that the negative payoff effect of rejecting a low offer can be
outweighed by the even more negative payoff effect the rejection has on other strategies, thus
turning a payoff loss into a relative evolutionary advantage for the rejecting strategy. Debove
et al. (2016, p. 248) refer to this effect as ‘spite”. The indirect evolutionary approach is com‑
pelling because it may providemore direct explanations for the evolution of social preferences,
which connects it more closely to experimental work, and can be regarded as complementary
to the direct evolutionary approach, which aims to explain the evolution of behaviour in the
absence of the rationality assumption.
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of the preferences and behaviour displayed by their experimental subjects.14
Research aimed at discovering and validating these ultimate explanations

for behaviour in the laboratory, and in real life, is a large and challenging project.
Here, it is not possible to apply the kind of strict controls available in labora‑
tories, and, as we have learned, norms and behaviour are not neatly tied to
speciϐic games but come from exposure to a ϐluid and rich mixture of compli‑
cated real‑life games, and are driven by a mixture of evolutionary processes
such as learning, imitation and even genetic evolution. As always, simple and
tractablemodels are likely to be helpful, and credible stories for howbehaviour
could have developed, even in ϐictitious societies where the ultimatum game is
the only interaction, and reputation effects are somehow irrelevant, can form a
part of the answers we seek.15 But this will be useful only if we have a proper
understanding of what stories our model can tell us.

Unfortunately, evolutionary theorists have too often been vague about the
interpretation of their theories. Debove et al. (2016, p. 251), surveying various
models that seek to identifymechanisms according towhich fair behaviour can
evolve among ultimatum game players, suggest that this might have to do with
the fact that the same evolutionary equations can often be applicable at differ‑
ent levels – learning, cultural and genetic evolution. However, they point out
quite reasonably, this vagueness on interpretationmay have negatively affected
our understanding of the origins of human fairness. To this end, I aim to pro‑
vide in this chapter amore concrete interpretation of the GBSmodel applicable
to a society in which cultural evolution takes place.

3.4 Amodel of imitative learning
The setting for this model is a large well‑mixed population of individuals who
play theultimatumgameeverydaywith randompartners. Theymayhaveother
kinds of interactions, but these do not affect their behaviour when playing the
ultimatum game. Player behaviour is myopic and non‑strategic; players do not
believe that their actions can affect the behaviour of others, or that others adapt
their behaviour (Mailath, 1998, p. 1355).16 This may be due to the large size of

14See also Güth and Napel (2006, p. 1038).
15It is good to recognize explicitly the tension between acknowledgement that the UG is un‑

common in historical real life, but then to proceed to model a world where the UG is the only
gamebeingplayed, hoping tounderstandevolvedbehaviour in the realworld. LikeGBS, Skyrms
(2014, p. 29) is explicit on both these points. The question of how we can learn about the real
world using unrealistic, very simplemodels, is not unfamiliar to economists. The thing to avoid
is to relate results from the model back to the real world in roughshod fashion; for example
when we ϐind “anomalous” behaviour in an evolutionary model, we should be careful not to
suggest that we have suddenly “explained” seemingly similar “anomalous” behaviour in the
real world with a very different context, without further ado.

16Mailath adds, “and they do not look for patterns in historical data”.
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the population and bounded rationality (Friedman, 1998, p. 16). It may also be
because behaviour is constrained by social norms and/or emotional responses
elicited by social interactions.

The payoffs players receive from the ultimatum interactions can be thought
of as a generalizednotionof “resources” that arenecessary for survival, security
and happiness. We may call these resources “dollars” for convenience. The
payoffs are not exactly “utility” values, because “utility” in the modern sense
is what would be maximized by the agents’ behaviour on the assumption that
they have consistent preferences and behave fully rationally in that pursuit.17
These agents are not really endowed with preferences – each agent at simply
holds a “strategy”, and rationality is not assumed either.18

The critical assumption about payoffs is that players will tend to replace
strategies that obtain relatively low payoffs with strategies that obtain rela‑
tively high payoffs over time. This may be due to a mixture of learning (delib‑
erate improvement) or gradual change in behavioural norms to accommodate
more effective strategies. In this model (a version of Model 2 in Weibull, 1995,
p. 158), I simply assume that all agents have a small exogenous probability of
updating their strategies in a short time interval, and the new strategy is se‑
lected by imitating a randommember of the population, weighted by their cur‑
rent expected payoffs. Since the target for imitation is an agent rather than a
strategy, the probability of a strategy being chosen for imitation will naturally
also be weighted by the current frequency of that strategy in the population.
The result would be approximately the same if an agents who have decided to
update consider sufϐiciently representative samples instead of the whole pop‑
ulation and choose their new strategies with probability weights proportional
to payoffs observed in the samples.19 Note that agents can sometimes choose
strategies worse than their current ones.

Assume there are 𝑁 proposers and 𝑁 responders, with the number of pro‑
posers and responders following each strategy 𝑖 equal to 𝑧𝑃𝑖 and 𝑧𝑅𝑖 respectively

17In the indirect evolutionary approach, it is likewise the case that “evolutionary success” and
“utility” are distinct concepts (Konigstein and Muller, 2000, p. 236). In this literature, utility
is concrete and utility function parameters are subject to evolution, but evolutionary ϐitness
depends on some more objective measure, e.g. material resources.

18It may be that evolution eventually results in behaviour that appears rational and that can
reasonably be ϐitted to a utility function, but there is no guarantee that the utility function will
be neatly tied to the game’s dollar payoffs. It may be argued that the agents are unreasonably
unsophisticated, but bear in mind that there may be unmodelled complications, e.g. compli‑
cated strategic structure, considerations involving social relations and behavioural norms, etc.
See Mailath (1998, p. 1356).

19Simulation results (not shown) suggest that agents taking small samples will have a small
bias in favour of strategies with higher frequencies in the population, as low‑frequency strate‑
gies will often not be represented in a small sample, in which case their payoffs do not come
into play. This effectively blunts the force of selection, but the effect appears to be relatively
minor for reasonable sample sizes (e.g. 10) so it will not be pursued in detail in this chapter.
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(population indicators will again be suppressed below). As this is a cultural
learning/imitation model, and not a biological model (e.g. Taylor and Jonker,
1978), 𝑁 remains constant and all changes in frequencies are due to individu‑
als changing their strategies. Time proceeds in periods of length 𝜏. Time can
be either discrete, with 𝜏 = 1, or continuous, with 𝜏 → 0.

In each period, or at each point in time, each agent interacts with other
agents and gets assigned the expected payoff against the current strategy dis‑
tribution of the opposite population. Next, agents enter a selection phase. Each
agent has a probability of changing its strategy within the period due to selec‑
tion equal to 𝜏Δ𝑠, where 𝑠 is a scaling factor (discussed below). Notice thatwith
𝜏 → 0, this becomes a Poisson process with agents changing their strategies at
a rate of Δ𝑠. Agents changing their strategies select a new strategy randomly,
with the probability weight of strategy 𝑖 being selected equal to

𝑧𝑖
𝑁
𝜋𝑖
𝜋

Following the selection phase, a mutation phase, reϐlecting low‑frequency mis‑
takes, innovation or other unmodelled shocks at individual‑level, completes
the round. Each agent’s strategy is changed due to mutation with probability
𝜏𝛿 during the period. Assume the new strategy is selected randomly from a
uniform distribution. Putting selection and mutation together, the expected
change in the number of agents following 𝑖 during the current period is,

𝐸(𝑧𝑖(𝑡 + 𝜏) − 𝑧𝑖(𝑡)) = 𝑁𝜏Δ𝑠𝑧𝑖(𝑡)𝑁
𝜋𝑖
𝜋 − 𝑧𝑖(𝑡)𝜏Δ𝑠 + 𝑁𝜏𝛿 1𝑁 − 𝑧𝑖(𝑡)𝜏𝛿

This can be written as,

𝐸 (𝑥𝑖(𝑡 + 𝜏) − 𝑥𝑖(𝑡)) = 𝜏 ቈΔ𝑥𝑖 ൬𝑠
𝜋𝑖
𝜋 − 𝑠൰ + 𝛿 ቆ 1𝑁 − 𝑥𝑖ቇ (3.2)

where 𝑥𝑖 = 𝑧𝑖/𝑁 and time arguments (𝑡) have been suppressed on the RHS.
Given that the population is large and has no structure, and the effects of both
selection andmutation are idiosyncratic, we can appeal to the law of large num‑
bers to argue that the system’s evolution should be closely approximated by
its mean dynamic (Sandholm, 2010, p. 119). In section 3.6, I treat this claim
critically, using simulations to show that extremely large populations could be
needed for the deterministic approximation to be a good ϐit for the stochastic
model, especially in relation to theGBS result of stable non‑SPNEequilibria. But
for the moment, assume an inϐinite population, which simply means we drop
the expectation operator,

𝑥𝑖(𝑡 + 𝜏) − 𝑥𝑖(𝑡) = 𝜏 ቈΔ𝑥𝑖 ൬𝑠
𝜋𝑖
𝜋 − 𝑠൰ + 𝛿 ቆ 1𝑁 − 𝑥𝑖ቇ (3.3)
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The model can now be specialized by letting 𝜏 = 1 and 𝑠 = 1, which gives,

𝑥𝑖(𝑡 + 1) − 𝑥𝑖(𝑡) = Δ𝑥𝑖 ቆ
𝜋𝑖 − 𝜋
𝜋 ቇ + 𝛿 ቆ 1𝑁 − 𝑥𝑖ቇ (3.4)

Setting Δ = 1 and 𝛿 = 0, it can be seen this is the discrete replicator dynam‑
ics equation of Maynard Smith (1982, appendix D), also called the adjusted
replicator dynamics. It is based on the evolutionary biological model of non‑
overlapping generations, with each organism asexually producing a number of
offspring proportional to its payoff (directly interpreted as ϐitness) to form the
successive generation, i.e. 𝑥𝑖(𝑡 + 1) = 𝑥𝑖𝜋𝑖/𝜋. It is also (with mutation added)
themodel usedbyBinmore andSamuelson (1994, p. 57) to study theultimatum
game’s evolutionary trajectories, with somewhat similar but different results to
the GBS paper (to be discussed in the next section).

Alternatively, we can let 𝜏 → 0 and 𝑠 = 𝜋 in (3.3), which gives,

𝑑𝑥𝑖
𝑑𝑡 = Δ𝑥𝑖 (𝜋𝑖 − 𝜋) + 𝛿 ቀ 1𝑁 − 𝑥𝑖ቁ (3.5)

This is identical to (2.1), the standard continuous noisy replicator dynamics
used by GBS. Thus the imitationmodel can provide plausiblemicrofoundations
for theGBSaggregatedeterministicmodel,with the critical assumption required
that 𝑠 = 𝜋, which makes the rate at which individuals revise their strategies
equal to Δ𝜋, i.e. proportional to average population payoff.

The imitation dynamics of this model has been selected to give the GBS
model a concrete interpretation as a process of cultural evolution, playing out
over longer time‑spans (perhaps generations),wheremost behaviour is socially
acquired, with the addition of occasional individual innovations through muta‑
tions. The feature of the model that agents due for strategy revision choose a
new strategy froma representative sample from the population, in a single step,
distinguishes thismodel froma number of individual‑level strategy adjustment
models described in the literature, termed “revision protocols” by Sandholm
(2010). Quite a number of suchmodels exist that lead to the continuous replica‑
tor dynamics, which provide valuable alternative interpretations for the same
aggregate dynamics; a brief review follows.

It is instructive to start with the model presented in GBS (p. 85). In it, the
probability of revision in a given short time period is proportional to the differ‑
ence between current payoff and an aspiration level drawn randomly for each
agent from a uniform distribution. If a new strategy is chosen, it is chosen from
a randomly selectedmember of the population. Models presented in Björnerst‑
edt and Weibull (1995, p. 162), Binmore, Samuelson, and Vaughan (1995) and
Sandholm (2010, p. 154) have the sameworking principle, i.e. that poor strate‑
gies tend to fade away because they get replacedmore rapidly than good strate‑
gies. These models place only a slight gloss on top of the biological survival of
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the ϐittest principle, and agents who have decided to revise their strategies are
totally insensitive to the payoffs of target strategies, which is not a reasonable
implication in the context of socially aware humans undergoing a process of
cultural evolution.20

Models in which agents tend to imitate those who are successful are more
appealing. The proportional imitation rule model of Björnerstedt and Weibull
(1995, p. 163)21 is relatively sophisticated. Agents receive revision opportuni‑
ties according to a Poisson process at a common rate.22 A revising agent picks
another agent from the population at random, then adopts that agent’s strategy
only if it delivers a better payoff and thenwith a probability proportional to the
difference in payoffs between the current and potential target strategy. Weibull
(1995, p. 155) attempts to motivate this model by supposing that agents ob‑
serves both payoffs with error, but this only works when the observation er‑
ror for own payoff is larger than the error for the other agent’s payoff, so that
agents can never mistakenly imitate lower‑payoff strategies, which seems in‑
congruous. Alternatively one can assumeperfect observationbut some random
impediment to switching, e.g. switching costs.

A simpler rule leading to the same result, as long as payoffs are positive, is
given by the “Imitation of Success” rule of Sandholm (2010, p. 155). Here, as in
the previous model, a single individual from the population is sampled when
a revision opportunity arrives, but the probability of then switching is simply
equal to the potential target strategy’s payoff.23 This interpretation appears to
require that all payoffs be in the interval [0..1] so that they are valid probabil‑
ities; a rescaling of payoffs to achieve this would also scale the speed of aggre‑
gate adjustment, which may be undesirable in certain cases. Nevertheless, the
standard replicator dynamics follow quite directly from this interpretation as
expected inϐlows to a strategy’s frequency is Σ𝑗∈𝒮𝑥𝑗𝑥𝑖𝜋𝑖 = 𝑥𝑖𝜋𝑖 and expected
outϐlows from the strategy is 𝑥𝑖Σ𝑗∈𝒮𝑥𝑗𝜋𝑗 = 𝑥𝑖𝜋. This rule is similar tomymodel
in that the switching behaviour is independent of own payoff, but differ in the
sample size of one and the possibility of not switching at all.

A variant, due to Hoϐbauer and Schlag (2000, p. 529), called “Imitation of
20A counterargument is that they would be sensitive indirectly, because even though they

choose new strategies from random members of the population, they would drop poor‑
performing ones relatively quickly afterwards.

21Schlag (1998) shows that this rule has optimality properties under condition of limited
memory. See also Model 1 in Weibull (1995, p. 155), “Imitation via Pairwise Comparisons” in
Sandholm (2010, p. 154) and Hoϐbauer and Schlag (2000, p. 529)

22Within the population, the rate at which strategies are updated is now the same across
individuals. This may seem unrealistic because those with poor payoffs may want to change
their strategies quickly. It is however conceivable that all agents are equally keen or able to
change their strategies at a rapid pace, driven by imperfect knowledge of where their payoffs
ϐit into the rankings, practical constraints in the rate at which they are able to switch and/or an
independent inclination to conform (i.e. switch strategies).

23Sandholm allows a constant to be added, but this is not necessary if payoffs are positive.
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Success with Repeated Sampling” by Sandholm (2010, p. 155), lets the revis‑
ing agent sample another agent, imitating with probability proportional to the
potential target’s payoff, and repeating the procedure until the agent has imi‑
tated someone. A little awkwardly, this “repeat until” loop procedure does not
consume any time regardless of the number of pairwise comparisons required.
This does not result in the standard replicator dynamics as the other models
reviewed here, but in the so‑called Maynard Smith replicator dynamics (May‑
nard Smith, 1982, AppendixD) or (payoff‑)adjusted replicator dynamics, which
can be changed into the standard replicator dynamics by scaling the strategy re‑
vision (selection) rate by current average payoff in the population.

This ismathematically equivalent tomymodel, including the rescaled selec‑
tion rate (obtained in my model by setting 𝑠 = 𝜋), except that I interpret the
procedure as drawing a single large sample (or even the entire population) and
choosing, in a single step, one individual from the sample with payoff‑weighted
selection probabilities, obtaining the same result. This seems a less cumber‑
some interpretation, avoiding the repeated sampling procedure, and a better
reϐlection of a cultural evolutionary process, where it is reasonable that indi‑
viduals can observemultiple other individuals at the same time and choose one
of them to imitate. I will discuss the reasonableness of the rescaling operation
below.

It is worth pointing out that, while these models seem quite different from
each other, they all deliver the samemathematical end result, namely the repli‑
cator dynamics. To these, one could also add individual‑learning models that
likewise lead to the replicator dynamics, such as Börgers and Sarin (1997),
Posch (1997) and Easley and Rustichini (1999), which may be more relevant
to interactive decision scenarios, e.g. laboratory behaviour. It may seem then,
in a certain sense, that all of these models must really be “the same”, so the
distinctions of interpretationmust be unimportant. Three responses can be of‑
fered in support of the contrary view. Firstly, each model is a special case in its
class, and the general analysis between classes of models would not be equiv‑
alent, so when one decides to “move beyond” the replicator dynamics, speciϐic
interpretations will matter for results. For example, in my model, relaxing the
assumption of payoff proportionality in selection probabilities would lead to a
different analysis than relaxing the assumption of payoff‑aspiration difference
proportionality in GBS’s model. Secondly, different interpretations can illumi‑
nate or obscuremeaning and implications for the applicability of themathemat‑
icalmodel to different real‑world scenarios – I explore a case in point in the next
section. Thirdly, while the various models may have the same expected trajec‑
tories, their underlying stochastic models can give different results (Sandholm,
2010, p. 498). In section 3.6, I report on stochastic simulations of my underly‑
ing model, which clearly shows that stochastic effects can matter a great deal
for non‑inϐinite populations, so the details of the microfoundations are conse‑
quential.
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3.5 Selection andmutation rates in the
continuous and discrete replicator dynamics

The main GBS result, asymptotically stable evolutionary equilibria that are not
subgame perfect, is sensitive to parameter choices for Δ and 𝛿, the selection
and mutation rates. In their table I, GBS (p. 63) report different modal offers
that their simulations settle on for different values of 𝛿𝑃 and 𝛿𝑅 , the respective
mutation rates for proposers and responders. These are all Nash equilibria:
proposers offer this amount and responders accept it (using a variety of strate‑
gies). GBS always set, for each population, Δ = 1−𝛿, so selection rates go up as
mutation rates go down and vice versa. In fact, the same results could easily be
obtained by adjusting only the mutation rate, or only the selection rate (in the
opposite direction); only the ratios matter for the dynamical system’s trajecto‑
ries.24 The results show, for example, that if 𝛿𝑃 > 𝛿𝑅 , the subgame‑perfect
result, or a result close to it, is obtained, but if 𝛿𝑃 < 𝛿𝑅 , modal offers of 9 are
obtained, which is far from the subgame‑perfect solution. When 𝛿𝑃 = 𝛿𝑅 , the
end result is modal offers of 7, still far from the subgame‑perfect solution, but
seemingly on the edge of the region where the result “clearly” occurs.

There is a a similar table in Binmore and Samuelson (1994, p. 58), show‑
ing results for the same UG but with dynamics determined by the discrete‑time
adjusted replicator dynamics described by (3.4) instead of the standard replica‑
tor dynamics. Here, it seems to be more challenging to show the non‑subgame‑
perfect result clearly – equal 𝛿𝑃 and 𝛿𝑅 result in a ϐinal a modal offer of 2, and
𝛿𝑃 < 𝛿𝑅 is essential to show the result more forcefully. A comparison of (3.3)
and (3.4) shows clearly enough that the only difference on the RHS is that the
selection term in the adjusted replicator dynamics is divided by 𝜋, but the one
in the standard replicator dynamics is not (see footnote 12 in GBS).

Since 𝜋 > 1 in this application, for both populations, this has the effect of
making the force of selection relatively weaker in the adjusted dynamics, es‑
pecially for proposers, due to their higher average payoff compared to respon‑
ders.25 As mentioned, weaker selection has the same effect as stronger muta‑
tion – and stronger mutation for proposers mean more accidental low offers,
hence greater incentives for responders to accept low offers, hence greater in‑
centives for proposers to make such lower offers, thus explaining the greater
tendency for higher‑offer equilibria to be unstable under the adjusted replica‑
tor dynamics. It was known from the beginning that the two versions of the

24Adjusting both selection and mutation rates by a common factor only affects the speed of
adjustment.

25This also suggests, somewhat uncomfortably, that results should be sensitive to the choice
of currency units in which payoffs are measured. 𝜋 < 1 does not necessarily mean “small”
money amounts are at stake, e.g. payoffs could be measured in pots of gold. Perhaps in such
cases it would be reasonable to scale payoffs or to rather use the adjusted replicator dynamics
(see below).
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replicator dynamics are equivalent for single populations, apart from a change
in the rate of time passage, but Maynard Smith (1982) warned that the equiva‑
lence does not extend to the case of multiple interacting populations, eachwith
its own average payoff.

Which model is right? Armed with a defensible microfoundations model,
from the previous section of this chapter, a view can be formed. It was seen
that the rate at which individual agents revise their strategies must be Δ𝜋 to
obtain the standard replicator dynamics, and simply Δ to obtain the adjusted
replicator dynamics. Under the former, agents revise their strategies faster the
higher 𝜋 is, while under the latter, the revision rate is independent of 𝜋. Since
𝜋𝑃 > 𝜋𝑅 , because proposers are getting larger shares of the pie in all reported
results, individual proposers will be revising their strategies at a faster rate
than responders under the standard replicator dynamics, even when Δ𝑃 = Δ𝑅
and 𝛿𝑃 = 𝛿𝑅 , i.e. the selection and mutation rate parameters are equal for the
two populations. We could say that the use of the standard replicator dynamics
tends to trigger the GBS result because it features proposers that adjust their
strategies at a higher rate, thus weakening the effect of mutation for proposers,
relative to responders.

In biological applications, payoffs are typically interpreted as biological ϐit‑
ness, i.e. the number of viable offspring, and the distinction between standard
and adjusted replicator dynamics hinges onwhether generations overlap (stan‑
dard) or not (adjusted) (Taylor and Jonker, 1978, p. 149). In social science ap‑
plications, this distinction does not apply so the choice is harder to motivate.
One potential advantage of the adjusted dynamics is that they are independent
of average payoff levels (Binmore and Samuelson, 1994, p. 57) – this should in‑
dicate that the adjusted dynamics should be preferred if payoffs are inherently
meaningless numbers, and/or if there is some reason to think that revision fre‑
quency should be exogenous.

In the case of the UG, the payoff numbers are not entirelymeaningless ‑ they
are money/resource amounts. The question is whether people should learn
faster if payoff levels were higher, in which case the standard replicator dynam‑
ics (used by GBS) would in fact be more appropriate. It should be quite natu‑
ral for economists to think that higher payoffs, or, more speciϐically, higher po‑
tential gains/losses from good/bad choices, could act as an incentive to invest
more mental and other resources into the process of decision making. In lab‑
oratory UG experiments, higher stakes appear to drive faster learning (Slonim
and Roth, 1998; List and Cherry, 2000). Mäs and Nax (2016) ϐind that people
make costlier mistakes less frequently in coordination games. Similar effects
should apply in a setting of cultural evolution.

GBS themselves (p. 65) argue that agents have limited computational re‑
sources, so the higher potential gains for proposers should result in more dili‑
gence in their choices compared to responders, by which they justify applying
lower mutation and higher selection rate parameters for proposers. The argu‑
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ment could as easily be applied to argue in favour of using the standard over the
adjusted version of the replicator dynamics, because in it, selection becomes
proportionally stronger as average payoffs rise. Average payoffs is a sensible
proxy for potential gains of switching, especially as the switching that really
matters for stability of an equilibrium would be for very poor compared to op‑
timal or near‑optimal strategies. Consider a situation near an equilibrium of
the model, where almost all proposers make some modal offer and almost all
responders demand this offer or lower amounts. UG proposers who make of‑
fers that get rejected get a payoff of zero, while those making the modal offer
would get an expected payoff approximately equal to the average payoff. Sim‑
ilarly for responders, the difference that really matters is between strategies
that reject the modal offer, getting a payoff of zero, and strategies that accept it,
which get a payoff approximately equal to the average payoff for responders.

However, this presents a challenge: are GBS not perhaps overdoing it when
they use the standard replicator dynamics, which feature inherently stronger
learning for proposers due to their higher average payoffs, and on top of that
also apply differential selection and mutation parameters favouring stronger
learning by proposers?26 The question of exactly how much boosting of pro‑
poser learning relative to responders is appropriate is probably unanswerable,
but one can at least attempt to clarify the effects. With a modal offer of 9, pro‑
posers have average payoffs around three times that of responders, so even
with equal selection and mutation rate parameters, proposers would be revis‑
ing their strategies roughly three times as often as responders. At rest points
of the system, this would have the same effect as a reduction by two thirds of
the proposer’s mutation rates, which we know would tend to support the sta‑
bility of non‑subgame‑perfect equilibria. To see this, simply note that at rest,
𝑑𝑥𝑖/𝑑𝑡 = 0, so Δ𝑥𝑖 (𝜋𝑖 − 𝜋) = −𝛿 (1/𝑁 − 𝑥𝑖). If the LHS were multiplied by 𝑘,
it would have the same effect as multiplying 𝛿 by 1/𝑘, either to bring the two
forces into balance or to disturb such a balance.27 GBS report results for var‑
ious parameter values, but it seems that a boost to responder mutation rates
relative to proposer mutation rates by a factor of ten gives a clear result, so
let us consider this ratio as an example. With equal mutation rates, the same
effect as this particular ratio, by the aforegoing logic, would require the selec‑
tion rate parameter of proposers to be ten times that of responders. But in

26Despite a fair number of references to the paper, GBS’s assumption of higher responder
mutation rates do not appear to have been challenged before. It also appears in Binmore and
Samuelson (1994, p. 55), but in this case the adjusted replicator dynamics are used, which do
not feature inherently stronger learning for proposers so itmay bemore appropriate to impose
differential mutation rate parameters here. The argument is again slightly elaborated upon in
Samuelson (1997, p. 153), mentioned in Fudenberg and Levine (1998, p. 84) and again (with
endorsement) in Akdeniz and Van Veelen (2023, p.580).

27Weseealso that anyequiproportional changes to selection andmutationparameterswould
leave the coordinates of rest points undisturbed, though trajectories away fromrest points need
not be unaffected, thus affecting basins of attraction, velocity, etc.
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the imitation model, this implies individual proposers would be updating their
strategies around thirty times as fast as responders28 – perhaps too much?

The other individual‑level learning/imitationmodels reviewed in the previ‑
ous section do not all show as clearly that, under standard replicator dynamics,
proposers learn at an effectively faster rate than responders due to their higher
average payoffs. Nevertheless, the same effect is present in some form or an‑
other in all of them. For example, in the GBS random aspiration level model,
and other models where revision is driven by payoffs relative to a standard,
selection is driven by the fact that strategies with relatively low payoffs are rel‑
atively more likely to switch their strategies. However, if the average payoff
in the population is low relative to the standard, average switching rates, in‑
cluding for the relatively better strategies in the population, will be high, thus
diluting the differential effect which would have allowed relatively poor strate‑
gies to fade away; the net effect is more inertia and less effective adaptation
towards relatively optimal strategies in low average payoff populations. By con‑
trast, higher average payoff populations will more effectively be able to elimi‑
nate poor strategies because there is less switching among the bulk of the pop‑
ulation, so the comparatively higher switching rates of a minority with poor
strategies are more effective at changing the population’s composition.29

Under both the Proportional Imitation and Imitation of Success rules dis‑
cussed in the previous section, an agent picked for revision will revise or not
with a probability that depends positively on the payoff of the potential target
strategy and thus on average payoffs, thus higher‑average‑payoff populations
will tend to have more frequent payoff‑increasing switching. Under the Imita‑
tion of Success with Repeated Sampling rule, as well as my own model, agents
always switchwhen granted a revision opportunity, so there is no link between
switching rates and average payoffs, and selection is achievedbybiasing switch‑
ing towards high‑payoff strategies, so a lower average payoff does not add iner‑
tia.

28To be unnecessarily exact, at a rest point featuring modal offer of 9, with 𝛿𝑃 = 0.01 and
𝛿𝑅 = 0.1, simulations show that the ratio of average proposer payoff to average responder
payoff is 3.44. And we would also need to take into account that GBS always choose Δ = 1− 𝛿
so setting 𝛿𝑃 = 0.01 and 𝛿𝑅 = 0.1 also means Δ𝑃 = 0.99 and Δ𝑅 = 0.9. To achieve the same
effect with equal mutation rates would then require Δ𝑃/Δ𝑅 = 11. So, in the imitation model,
proposers would be updating their strategies 37.85 times as fast as responders.

29GBS (p. 87) state that their procedure assigns identical learning rules to the two popu‑
lations, because they draw aspiration levels from the same uniform distribution for the two
populations. In practice, this may mean that responders, often frustrated at rarely achieving
the kind of payoffs typically enjoyed by proposers, have a high rate of distributionally neutral
switching that simply dilutes the selection effect. The effect is similar to assigning a higher
mutation rate to the responder population. Perhaps, rather than drawing from a common dis‑
tribution, it would be more ϐitting to align aspiration levels with achievable payoffs within the
practical scope of the given role.
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3.6 Stochastic effects in ϐinite populations
In section 3.4, I appealed to the law of large numbers to set the differential mo‑
tion of aggregate frequencies equal to their expected values in the stochastic
learning/imitation model that was developed there. GBS (p. 86) and many oth‑
ers working with aggregate dynamics make such an assumption as a matter of
standard practice (Sandholm, 2010, p. 119). Friedman (1998, p. 20) discusses
several beneϐits of the assumption. It is understood that deterministic aggre‑
gate dynamics models serve as approximations to stochastic individual‑level
models in large populations over ϐinite time horizons where stochastic effects
are independent and idiosyncratic, so cancel out in aggregate; the underlying
stochastic models are often implicit.

Stochastic effects can occur inmatching of players in interactions that affect
payoffs or it can occur in the learning /mutation processes. Asmy interest here
is in the latter, I maintain the questionable assumption that each agent receives
the payoff equal to the expected payoff for its strategy. But perhaps this is not
so unreasonable: recall that payoffs matter in the stochastic imitation model
because agents selected for strategy revision choose a new strategy at random,
but with probability weights proportional to payoffs. The role of payoffs is thus
limited to demonstrating the effectiveness of various strategies to others. The
random choice of a new strategy can therefore be interpreted as imperfect in‑
formation about payoffs, but it could just as well be interpreted as the payoffs
themselves being stochastic.

What kind of stochastic effects related to the learning process do we have
in mind? Consider, for example, that the stochastic model allows an individ‑
ual agent to sometimes imitate a lower‑performing strategy, and it is possi‑
ble in ϐinite populations, through a combination of such chance events, that
enough agents do this at the same time for the aggregate frequency of a lower‑
performing strategy to increase, which could never happen in the deterministic
approximation. Such accumulation of improbable effects can also occur due to
the mutation process described, which allows any individual agent to switch,
with some small probability, to any other strategy.

Consequently, in a ϐinite population, there is a small probability of signiϐi‑
cant jumps in aggregate frequencies occurring that do not occur in the deter‑
ministic model. Such ϐluctuations can be regarded as insigniϐicant if the system
has a tendency to correct itself; for example in the vicinity of an asymptotically
stable equilibrium.30 Stochastic ϐluctuations outside of equilibrium can also
be regarded as insigniϐicant if they shift the system to a slightly different tra‑
jectory, but the system ends up at the same or very similar equilibrium along
a qualitatively similar trajectory as the original over a comparable time span.

30The deϐining essence of an asymptotically stable equilibrium is that small stochastic jumps
are counteracted by the aggregate dynamics, thus any small “errors” are automatically cor‑
rected.
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But stochastic effects can also potentially take the system away from a stable
equilibrium, move a system from the basin of attraction of one equilibrium to
another or have large effects on the timing of evolutionary developments. In
short, if such stochastic effects are signiϐicant, deterministic dynamics may no
longer provide an accurate description of the system it is intended to model.

Can stochastic ϐluctuations of this nature affect the stability of an equilib‑
rium in the Ultimatum Game? In principle, in a dynamical system with multi‑
ple asymptotic attractors, when agent‑level stochastic elements are introduced,
there is always the remotepossibility that a combinationof improbable stochas‑
tic movements can take the system out of the basin of attraction of one equilib‑
rium and to the basin of attraction of another equilibrium (see Kandori et al.,
1993; Young, 1993). In such a system, given inϐinite time, the system will cycle
between all equilibria. In the UG, for example, suppose the current modal offer
is 6, with almost all proposers making this offer and an acceptance rate close
to 100%. There would be very strong selection pressure against anymutant re‑
sponder demanding an offer like 8, as the mutant would reject the modal offer
and get a payoff of zero. Only if, by coincidence, almost all proposers simultane‑
ously started offering 8, would the strong selection pressure against these mu‑
tants disappear. Such simultaneous coincidences are simply too improbable to
have relevance to our context of cultural evolution over longer time spans and
involving large numbers of agents.

More interesting stochastic effects could occur when aggregate selection
and mutation dynamics are “weak”, meaning that following a stochastic shift,
the system would ordinarily take a very long time to “correct”, if at all. Under
such circumstances, the system can “swim upstream” (Binmore and Samuel‑
son, 1997, p. 248): stochastic shifts can accumulate and potentially overwhelm
the aggregate dynamics with signiϐicant probability. Indeed, consider one of
the non‑subgame‑perfect asymptotically stable equilibria identiϐied by GBS. Al‑
most all responders accept themodal offer associatedwith the equilibrium, but
a signiϐicant share of responders follow suboptimal strategies that would re‑
ject positive offers below the modal offer. There is some selection pressure
against these strategies, because of the very low‑frequency presence of mutant
proposer strategies that make such low offers (which are themselves quickly
eliminated by strong selection pressure), but the force is weak. Mutation is
always weak, by design. When two such weak forces are delicately balanced
against each other, random disturbances can be consequential. The GBS result
for the UG, which we know to be sensitive to selection andmutation parameter
values, may be a such a case where stochastic effects can be consequential for
ϐinite populations of reasonable size.

A straightforwardway to establishwhether stochastic effects are signiϐicant
is to run computer simulations of the underlying stochasticmodel and compare
the results to simulations of the corresponding deterministic model. In the re‑
mainder of this section, I ϐirst present some graphs showing the evolution of fre‑
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quencies of proposer and responder strategies according to the deterministic
(standard) replicator dynamics equations. These serve both to clarify the evo‑
lutionary trajectories of the deterministic system, thus helping to understand
the GBS result of stable imperfect equilibria, and as a baseline to compare to
the trajectories of the stochastic model simulations that follow.

3.6.1 Deterministic model simulation
While I have argued in section 3.5 that unequal selection and mutation rate pa‑
rameters for the twopopulationsmaynot be justiϐiedunder standard replicator
dynamics, the GBS result occurs even when proposer and responder selection
and mutation rates are equal (see GBS, p. 63, or simulation results below). I
will investigate this case, i.e. 𝛿𝑃 = 𝛿𝑅 = 0.1 and Δ𝑃 = Δ𝑅 = 0.9.
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Figure 3.6.1: Deterministic UG simulation

I follow GBS in discretizing the continuous noisy replicator dynamics (2.1)
as follows: 𝑥𝑖(𝑡 + 𝜏) − 𝑥𝑖(𝑡) = 𝜏 ቂΔ𝑥𝑖(𝜋(𝑖, 𝒮) − 𝜋(𝒮, 𝒮)) + 𝛿 ቀ 1

40 − 𝑥𝑖ቁቃ, where
𝜏 = 1

100 .
31 Figure 3.6.1 shows the evolution of proposer and responder frequen‑

cies for each of the forty possible strategies over time, starting from uniform
distributions. On the left‑hand, two separate graphs with a common time scale
show the evolution strategy frequencies for proposers (top) and responders

31Experimentation with smaller values conϐirmed that this provides a close approximation
to the differential equation.
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(bottom), while the right‑hand‑side graphs show the same simulation over a
longer time span. The numbers indicate speciϐic strategies, e.g. “9” on the top
indicates the proposer strategy of offering 9 to the responder, while the on the
bottom the numbers indicate minimum acceptable offer amounts for respon‑
ders. It can be seen that at the beginning there are rapid developments, after
which the system settles into a series of equilibria punctuated by occasional
critical transitions to new equilibria. By the end of the simulation, all variables
are stationary.

Initially, high demands by responders quickly die out, but some, such as 10
(call this strategy R10) linger long enough to make offers of 10 (call this P10)
the optimal strategy for a short time, and the frequency of P10 can be seen to
increase near the beginning.32

However, this is transient, because enough proposers are making offers be‑
low 10 for R10 to diminish rapidly (when other, even worse, strategies have
died out), so that P9 becomes the optimal strategy for proposers before long.
P9’s frequency rises and by time 𝑡 = 20 the system has reached an equilib‑
rium where approximately all proposers are offering 9 and approximately all
responders accept 9 using a mix of demands of 9 and lower (call this the the
“P9 equilibrium”). This is indeed (very close to) a Nash equilibrium, because
all strategies (barring random mutations at very low frequencies) are best re‑
sponses to the mixed strategy represented by the opposite population’s distri‑
bution of strategies. Any strategy that does not reject 9 is (near‑)optimal for
responders, because rejecting it entails a payoff of zero. For proposers, an offer
of 9 is a best response given that it is accepted by (nearly) all responders and
that the risk of rejection when making a lower offer outweighs the potential
reward. The latter is the case when the frequency of responders that would re‑
ject a lower offer, closely approximated by the frequency of R9, is higher than
a certain threshold, 1

32 , which is indicated as 𝑇(9) in the ϐigure.33
The system remains in the P9 equilibrium for a long time, but the composi‑

tion of responder strategies changes during this time. Amongst others, it can
be seen that the frequency of R9 declines in favour of other strategies that also

32Recall that the frequency of strategies will increase if their payoffs are higher than the cur‑
rent average payoff. At the very beginning, the average payoff is quite low, so strategies that are
not optimal but still above averagemay rise, but the average quickly catches up so that only op‑
timal strategies, or very nearly optimal strategies (i.e. strategies that would be optimal except
for low‑frequency noise strategies in the opposite population), can increase their frequencies
through selection from about time t=5 onwards. The evolutionary dynamics are particularly ef‑
ϐicient at eliminating behaviour that leads to rejections, and after the initial period, rejections
occur only at very low frequencies (due to mutations).

33For a proposer, the frequency of R9 represents the approximate probability that P8 would
be rejected, given that higher demands have frequency of approximately zero. Switching from
P9 to P8means proposers can gain an extra dollar for themselves with probability approx. 1−
𝑥𝑅9 , but there is a probability of approx. 𝑥𝑅9 that the lower offer would be rejected, which would
entail a loss of 31 dollars.
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accept P9. Eventually, the frequency of R9 approaches the 𝑇(9) threshold, and
an equilibrium transition is initiated that eventually results in a new equilib‑
rium, P8. Even before R9 reaches the threshold, proposer strategy P9 starts
to decline and P8 starts to rise, slowly at ϐirst, as payoff gradient between P9
and P8 ϐlattens and selection’s force weakens, allowing mutation’s effect to be
more assertive despite being an inherently weak force. Now, selection pushes
P9 up while mutation pulls it down, but there is a tiny advantage to mutation,
leading to the slowbut accelerating downwards trend. Once the𝑇(9) threshold
is actually crossed, the equilibrium is broken and proposer selection changes
direction, nowworking together withmutation to pull P9 down rapidly to near
zero, where it remains forever. Fast forwarding to around 𝑡 = 570, another
equilibrium transition takes place, the frequency of R8 having crept down in a
similar fashion as R9 earlier, but over a longer period of time, to ϐinally break
through the threshold 𝑇(8) = 1

33 (see ϐigure 3.6.1b).
In summary, we see that there are extended periods during which the sys‑

tem is in a state of equilibrium that are punctuated by rapid transition peri‑
ods, after which it settles into a different equilibrium. Furthermore, the system
always moves from higher to lower‑offer equilibria, since once a substantial
portion of proposers make a particular offer, there is permanent and strong
selection pressure on responders not to reject that offer. Successively lower
offer equilibria appear to be increasingly difϐicult to escape, and more time is
spent in relatively lower offer equilibria. Ultimately, an equilibrium, which is
not necessarily the SPNE, is reached that is so difϐicult to escape that the system
remains in it forever.

3.6.2 Stochastic model simulation
The stochastic model is an agent‑based model, with each individual’s selection
andmutationmodelled according to the imitationmodel in 3.4. As themodel is
continuous‑time, I follow the same discretization procedure as above, i.e. time
proceeds in small steps of 𝜏 = 1

100 . In each small time step, each agent has a
probability of 𝜏Δ of being selected for strategy revision, and if selected, choose a
new strategy at random from the population with probability weights equal to
current expected payoffs. Individual strategic interactions are notmodelled (as
explained above). The same parameter values as before are used, 𝛿𝑃 = 𝛿𝑅 =
0.1 and Δ𝑃 = Δ𝑅 = 0.9, as well as the same uniform initial frequencies.

Agent‑basedmodelling canbenotoriously computationally intensive (Parry
andBithell, 2011), and one rarely sees simulations for large populations of over
a few thousand agents or so. Fortunately, in the imitation model, a simple pro‑
gramming technique could be used to dramatically speed up simulations and
allow very large populations to be modelled. Instead of determining, in each
small time step, if each agent is to be selected for strategy revision, a single
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draw from a binomial distribution is made per strategy that gives the number
of agents whose strategy should be revised. Then, new strategies can be se‑
lected for all revising agents in a population in a single step, using a single draw
fromamultinomial distribution,34 withweights equal to 𝑥𝑖𝜋𝑖 . Theweights only
need to be calculated once per strategy per time period. The number of agents
following each strategy can be adjusted each time period by subtracting the
number revising agents and adding the relevant number from the multinomial
draw. The computational intensity of this procedure is independent of 𝑁, so
arbitrarily large number of agents can easily be modelled without adding to
computational requirements or running time. As can be seen below, this was
very useful, and necessary, to model a large enough number of agents that the
inϐinite‑population deterministicmodel’s results could be approached convinc‑
ingly.

Figure 3.6.2 shows the results of four simulations with the samemodel and
parameters, only differing by the number of agents. For an extremely large pop‑
ulation, with 100 million proposers and 100 million responders (a), the simu‑
lation proceeds as predicted by aggregate dynamics (2.1) (see ϐigure 3.6.1b),
but as 𝑁 is reduced, responder frequencies in particular become visibly noisy.
With a million agents in both populations (b), the end result is still essentially
the same, as the the system progresses through the different equilibria and re‑
mains in an equilibrium with offers of 7 after 𝑡 = 1 000, but notice that the
timing of the second equilibrium transition is much earlier. Despite the signif‑
icant stochastic drift in responder frequencies, R7 never drops near enough to
the critical threshold 𝑇(7) = 1/34 for the system to transition to a lower‑offer
equilibrium in this simulation.35 Different behaviour is obtained for smaller
populations: if 𝑁 = 100 000, stochastic drift can more easily pull R7’s fre‑
quency below the critical level and the system transitions to a lower‑offer equi‑
librium.36 Finally, when 𝑁 = 1 000, there is so much stochastic drift that no
equilibrium is stable in practical terms – at 𝑡 = 1 000, proposers are making
offers of 2. Even here, though the effect of stochastic drift on proposer frequen‑
cies is clearly visible, it has no practical signiϐicance, because strong proposer
selection quickly corrects any movement away from the optimal strategy. In‑
stead, stochastic drift effects transition changes in smaller populations via its
effect on non‑rejecting responder strategies, and in particular the relative fre‑

34My simulations were implemented in Python, using the NumPy library which has efϐicient
functions for binomial and multinomial distributions.

35It seems probable that, if the simulation were allowed to run for long enough, an equilib‑
rium transition would occur. However, I ran four additional simulations with 𝑁 = 1 000 000
for an extended time (until 𝑡 = 80 000), and in all cases the simulations remained in P7 equilib‑
ria. In the different runs, the timing of the transition to the P7 equilibrium is sometimes earlier
and sometimes later than in the deterministic model.

36This does not always occur with these parameters: in most of them the system reaches
𝑡 = 1 000 still in an equilibrium with offers of 7. However, if the simulations are left to run
longer, they eventually all transition to a P6 equilibrium at some point after 𝑡 = 1 000.
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Figure 3.6.2: Stochastic UG Simulations
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quency with which the equilibrium offer, is demanded.
For the case where differential selection and mutation rate parameters are

used for proposers and responders results are generally similar. I also ran sim‑
ulations with 𝛿𝑃 = 0.01 and 𝛿𝑅 = 0.1. Recall that an equilibrium offer of 9 can
be stabilized in the deterministic model with these parameters. Simulations of
the stochastic model with these parameters resulted in equilibrium offers of 9
for 𝑁 = 100 000 at 𝑡 = 50 000, i.e. the same result, but offers as low as 5
for 𝑁 = 10 000, and offers as low as 2 for 𝑁 = 1 000. The timing of equilib‑
rium transitions can be highly variable between different runs with the same
parameter values, but, similarly to the deterministic version, the system tran‑
sitions from higher to lower‑offer equilibria and eventually tends to settle at
some equilibrium above onewithout additional transitions taking place during
time‑spans that can feasibly be simulated. The offers at these “ϐinal” equilibria
are either the same as at the deterministic model (e.g. for 𝑁 = 1 000 000 and
higher) or lower (for smaller𝑁).

For either set of mutation rate parameters, if 𝑁 is small enough, e.g. in sim‑
ulations with 𝑁 = 520, the system does eventually reach the SPNE offer of 1,
thus showing that the large population assumption is vital for the GBS result.
While it is not perfectly clear what an appropriate value for 𝑁 would be for in‑
terpreting experimental results, it would seem that for real‑world settings in
a broader social context, there would be enough noise in learning, with occa‑
sional mistakes, for the subgame‑perfect result to be possible in principle. But
the time required to reach the subgame‑perfect resultmight be so large thatwe
should expect to observe the subgame‑perfect result only very rarely, unless ini‑
tial conditions are at or near the SPNE, inwhichwemay expect such conditions
to be maintained.37

3.7 Conclusion
The results presented in GBS remain as interesting and important as ever from
an evolutionary game theoretic perspective, but the relevance of the model
and results to the real world has not been clear. Since the paper was pub‑
lished in 1995, a large amount of experimental research has been conducted
around the world, using the ultimatum game (UG) as a basis to learn about hu‑
man behaviour and social preferences in simple strategic interactions. There
has been less enthusiasm for evolutionary explanations of experimental results
than for explanations based on rational behaviour combined with social pref‑

37I ran 215 simulations with 𝛿𝑃 = 0.01 and 𝛿𝑅 = 0.1 and 𝑁 = 520; on average the ϐirst
time 95% of proposers offer 1 was at 𝑡 = 8591.5, though it is also extremely variable, with
standard deviation 8038.2. The same set of simulations also conϐirmed that the probability of
a transition from a lower to a higher offer equilibrium is too low to be of practical signiϐicance
– not a single such transition was observed (though for even smaller𝑁 it may well occur).
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erences, and it is clear that evolutionary models by themselves cannot explain
some features of experimental data. Nevertheless, a number of experimental
researchers have found some evidence of learning taking place as subjects play
the same game repeatedly with different opponents, and certain features of
the evolutionary model, e.g. that learning takes place more clearly among pro‑
posers than among responders, have been validated.

In retrospect, however, it seems evident that expecting evolutionary mod‑
els, understood solely asmodels of interactive learning involving boundedly ra‑
tional yet narrowly self‑interested agents, to account for all or even themajority
of the rich behaviour and social preferences observed in experimental data is
an unrealistic pursuit. Fairness norms and social preferences are deeply held
and not simply forgotten after a few rounds of play. This points to the need to
better understand the origins of initial behaviour in experimental data.

Evolution is a powerful idea that can apply to different contexts and differ‑
ent timescales, and applying evolutionary thinking andmodelling in an attempt
to understand ultimate, rather than proximate, explanations for observed be‑
haviour remains a promising prospect. I argued that a reinterpretation of the
GBS model along such lines could prove insightful, but careful attention needs
to be given to issues of interpretation of amodel thatworks only at an aggregate
level. An individual‑level learning model based on social imitation was there‑
fore developed, to serve as plausible microfoundations for the standard repli‑
cator aggregate dynamics model. I have argued that the imitation model com‑
bines simplicity of interpretation and is particularly well suited to modelling
cultural evolution, where people copy other people’s behaviour, with a bias to‑
wards strategies that perform well individually. This seems most compatible
with the idea of humans as a social creature, driven by a combination of social
norms and material incentives.

However, once the individual‑level model has been adopted, it was found
that there are some important implications for the interpretation of the aggre‑
gate model. Speciϐically, in the standard replicator dynamics employed by GBS,
which shows the result of asymptotically stable non‑subgame‑perfect equilib‑
ria most clearly, individual agents learn faster the higher the average payoff for
their population. The adjusted, or Maynard Smith, replicator dynamics do not
have this effect. This implies that the form of the model chosen by GBS favours
selection for proposers relative to responders, which tends to strengthen their
result. This is not problematic in itself, as there is a good argument that pro‑
posers should pay more attention because they have more to lose if they play
a poor strategy, but GBS then also argue in favour of applying a higher muta‑
tion rate parameter value to responders, which multiplies the effect and ends
up producing a system in which the effective balance of selection andmutation
may have been pushed further in a speciϐic direction than might be considered
reasonable.

Even with equal selection and mutation rates in the standard replicator dy‑
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namics, the basic GBS result still appears, just a little more weakly. But the
result is sensitive to parameters,38 and will also be affected by other factors
not considered in detail, such as what monetary units are used to measure pay‑
offs. Given the sensitivity of the main result to model setup and parameters, it
is unsurprising that the result also does not hold up well in ϐinite populations,
where stochastic disturbances can upset the delicate balancing act required to
maintain stable non‑subgame‑perfect equilibria. The agent‑based model simu‑
lations presented in section3.6 show that the aggregate dynamics are a goodap‑
proximation for the underlying individual‑level stochastic model only for very
large populations in excess of amillion agents per population, contrary to Fried‑
man (1998, p. 20)’s arguments suggesting that much smaller numbers can of‑
ten be approximated by inϐinite populations. If ϐiner details like the timing of
equilibrium transitions are to be matched, then even more agents, e.g. a hun‑
dred million, are required.

Overall, these results suggest that less relevance should be accorded to the
GBS result of asymptotically stable subgame imperfect equilibria in cultural
evolutionary processes. The model may be able to explain why non‑subgame‑
perfect behaviour may persist for extended periods of evolutionary time, but
it is unlikely to be able to account for its indeϐinite persistence. The long‑run
tendency of the model, accounting for stochastic shocks typically expected in
ϐinite populations, is to converge towards the SPNE.39 Moreover, as indicated
by the simulation results in this chapter, the highly unequal subgame‑perfect
equilibrium, once reachedby the evolutionarymodel, ismore robust to stochas‑
tic disturbances than other equilibria. This suggests that the GBS result de‑
pends strongly on initial strategies being distributed so that there is substantial
weight on higher offers and higher demands.

The GBSmodel can therefore not, on its own, provide an explanation for the
origins of fairness norms and social preferences seen in experimental ϐindings.
This should not come as a surprise, given the argument that these proclivities
likely originated from long‑term exposure to a ϐluid and rich mixture of real‑
life interactions, which humans have engaged in daily over extended periods of
genetic and cultural evolution. This emphasises the need for further research
on evolutionary models that go beyond the standard ultimatum game.

GBS’s paper and those that have followed it remain valuable for allowing
a greater understanding of the ultimatum game’s structure and in particular
an appreciation of the different learning environments faced by proposers and
responders. Regardless of whether a particular non‑subgame‑perfect equilib‑
rium is asymptotically stable or not, we now understand that in its vicinity, re‑
sponders have only a small incentive to deviate from it, while proposers have

38Harms (1997) and Akdeniz and Van Veelen (2023) conϐirm that the GBS result is sensitive
to the precise way mutation is modelled, and GBS (p. 69) themselves also acknowledge this.

39This should not necessarily be interpreted as support for a prediction of SPNE play in any
particular context, given the slow speed of adjustment in the model.
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strong incentives to maintain it.



Chapter 4

An Evolutionary Perspective on
Good and Bad Reputations in the
Ultimatum Game

4.1 Introduction
A person with a reputation for being a tough negotiator may be able to obtain
favourable outcomes in bargaining interactions. But how can such a reputation
be obtained? Cheap talk is not an option in conϐlictual situations where there
would be obvious incentives to dishonestly inϐlate one’s apparent toughness. A
more credible methodmight be a public demonstration of willingness to suffer
a cost rather than accept an inferior deal. This could be rational if there were
a high enough probability that this act will become known to future bargain‑
ing counterparts, and that their behaviour will be changed in the desired way
through this knowledge. Butwhat is oftenoverlooked is that such a strategy can
only be effective if there are sufϐicient opportunities to build up a track record –
it is necessary to receive some low offers to be able to show that you will reject
them.

The effectiveness of a signalling strategy to convey useful information is en‑
dogenous if the opportunities to build a reputation depends on the distribution
of counterpart behaviours among those with whom an agent interacts. There
seems to be an inherent instabilitywhen the reputation’s purpose is to deter un‑
wanted behaviour: if the reputation‑building strategy were effective, it might
undermine itself by disincentivizing the behaviours that allow it to effectively
convey useful information.

In a bargaining situation, if one player uses a tough strategy of rejecting bad
offers, and the other accordingly refrains frommaking bad offers, both players
couldbeplaying sequentially rational strategies despite therebeingno effective
demonstration that lowofferswouldbe rejected. But if youacted “as if” yourop‑

75
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ponent was a tough negotiator, rather than on the basis of credible information,
youmay not even notice if your opponent’s strategy changed, so a pointmay be
reached where you are no longer playing a best response to the actual strategy
of the other player. Such situations could not be regarded as stable. It is also
not clear how such an equilibrium can be reached in the ϐirst place. In repeated
games, if there are equilibria supported by contingent punishments and/or re‑
wards, there will generally also be other equilibria where contingent strategies
are not used (Mailath and Samuelson, 2006, p. 4), and the parties may not face
adequate incentives to learn the behaviours associated with a particular equi‑
librium, especially if, as indicated, the information on which the equilibrium
depends may not be strong at critical times. Equilibrium selection issues can
therefore not be ignored.

These questions call for an evolutionary analysis, which this chapter uses to
study one of the simplest bargaining games, the ultimatum game. In the ultima‑
tum game, the ϐirst player, the proposer, gets a single opportunity to choose a
share of some ϐixed total amount of money to offer to the second player, the re‑
sponder, who in turn gets a single opportunity to accept or reject the proposal.
If accepted, the players are rewarded according to the proposal – the responder
gets what was offered and the proposer the remainder – while rejection leaves
both players with nothing. Researchers have been fascinated by the stark dis‑
parity between the predictions of theory, based on rational action and foresight,
and experimental results. The game’s unique subgame‑perfect Nash equilib‑
rium (SPNE) is an entirely lopsided division in favour of the proposer and no
rejections, while experiments mostly show relatively equal divisions proposed
and unequal divisions often rejected.1

It is plausible that norms, preferences and behaviour that experimental sub‑
jects bring to the laboratorymay be the result of genetic and cultural evolution‑
ary processes that have taken place outside the laboratory, in everyday life situ‑
ations, over different timescales (Gale et al., 1995, p. 70, Mailath, 1998, p. 1350,
Güth and Napel, 2006, p. 1038, Skyrms, 2014). For this reason, it is interest‑
ing to consider evolutionary dynamics for a system of strategically interacting
agents engaging in repeated interactions that can plausibly be approximated
by the ultimatum game as played in a research laboratory, but with some de‑
tails of the interaction changed to be more reϐlective of real‑world scenarios.
Developing a reputation for being a tough negotiator is typically not possible

1Human proposers typically offer between 30 and 50 per cent of themoney and responders
often reject offers below 20 per cent (Camerer and Thaler, 1995, p. 210, Oosterbeek et al., 2004,
Güth and Kocher, 2014, p. 398). The dominant interpretation is that responders experience
positive utility from rejecting what they regard as inferior or unfair offers (Fehr and Schmidt,
2006, p. 630), and proposers are motivated by the need to avoid rejection and (to varying de‑
grees) other‑regarding preferences e.g. altruism, egalitarianism or social norms (Cooper and
Kagel, 2016).
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in a laboratory,2 where great care is usually taken to ensure that interactions
are anonymous, but is likely a central concern in many real‑world bargaining
situations.

Previous authors (Nowak et al., 2000; Poulsen, 2007; Debove et al., 2016;
Zhang et al., 2023; Akdeniz and Van Veelen, 2023) have reported encouraging
results from evolutionary models of the ultimatum game with some form of
reputation. In their original paper, Nowak et al. (2000) present a deterministic
analysis of an inϐinite‑population minigame using replicator dynamics, along‑
side results from agent‑based computer simulations that involve a ϐinite popu‑
lation and a larger strategy space. The latter type of model is more ϐlexible in
terms of what can be modelled, and can easily be made more detailed and real‑
istic, but it can sometimes be difϐicult to provide comprehensive and tractable
explanations for the results, so it is sensible to begin with a thorough analysis
of a simple minigame.

In Nowak et al. (2000)’sminigamemodel, there are only two possible offers
proposers can make: High (H) and Low (L)3 and two corresponding respon‑
der strategies, namely to demand H or to demand L. If a responder “demands”
𝑖 it means that the proposer adopted a monotonic minimum acceptable offer
(MAO) strategy, accepting offers of 𝑖 or higher and rejecting any lower offer. H
can be thought of as the “fair” offer, e.g. half of the total amount, while L can be
thought of as a low amount that would leave the proposer with a much larger
payoff if accepted.

To model the effects of reputation in their minigame analysis, Nowak et al.
(2000) assume that whenever an L‑responder (that would accept L) meets an
H‑proposer (whowould ordinarily offer H), the proposer reduces her offer by a
constant amount reϐlecting a possibility that the proposer ϐinds out about and
exploits the information that the responder would accept L. We can call this
kind of information a negative reputation as it is something that a responder
would prefer not to be known. H‑proposers can only gain by offering less to
responders that will deϐinitely accept L. The conditionality in the H‑proposers’
strategy creates a direct incentive for responders to switch to demanding H (i.e.
rejecting L offers), and if responders demand H, proposers have an incentive
to offer H (to avoid the risk of rejections) so this creates an asymptotically sta‑
ble equilibrium. But there is also a second stable equilibrium, namely the UG’s
SPNE where L offers are made and accepted, because if the proportion of H‑
proposers is low, the incentive to avoid a bad reputation is diminished, and if
demands are low the strategymaking unconditional low offers is better for pro‑
posers.

The ϐinding of “fair” outcomes (and more generally, non‑subgame‑perfect
2A notable exception is Poulsen and Tan (2007).
3I use the following terminology: if a proposer “offers” 𝑖 then the proposed division is $ − 𝑖

to the proposer and 𝑖 to the responder, where $ is the total amount to be divided.



CHAPTER 4. GOOD AND BAD REPUTATIONS 78

stable equilibria) in an evolutionary model of the UG is undoubtedly interest‑
ing, but there is a problem: if all proposers are offering H, then how can they
ever learn that some responders would also accept L? There would be no in‑
stances of this to know about. Under endogenous information there would be
zero information at this equilibrium. Responders who demand H and L would
then be treated the same by the H‑offering proposers, and they would get the
same expected payoff, thus the stability of the equilibrium is no longer assured
as the frequency of L‑demandersmay drift upwards to a pointwhere proposers
can gain by switching to L offers, thus unravelling the equilibrium. Fortunately,
as I will show in this chapter (section 4.5.3), it turns out that in this case the
problem can be resolved fairly simply by adding a tiny amount of mutation to
the model, which stabilizes the H‑offer equilibrium by increasing information
slightly – enough to provide the necessary incentives that stabilizes the equilib‑
rium.

This example should illustrate the need for a proper consideration of en‑
dogenous information in cases where the opportunity to signal useful informa‑
tion depends on strategy choices of others. Of course, information also affects
behaviour (which is the point of it), so an equilibrium of a sort is neededwhere
the information generated bypatterns of behaviour leads to behaviour that gen‑
erates the information. In this chapter, I develop and apply to the ultimatum
game a general framework for determining such informational equilibria for
a two‑player sequential‑move game. For every strategy proϐile, where strate‑
gies of the ϐirst player is contingent on information about the second player’s
past actions that the ϐirst player may have gained, an endogenous information
equilibrium can be determined. An endogenous information equilibrium4 is an
information state that induces an action proϐile which itself generates the same
information state. In the simple example above, if all proposers offer H then the
information state generated cannot include any positive probability of a pro‑
poser gaining the knowledge that a responder accepted a low offer. Proposers
will only be able to know that all responders they interact with accepted high
offers, which is not useful information.

Realistically, information is partial, so a given responder action will only be
known to future bargaining counterparts with some probability. I will assume
that proposers have a ϐixed probability of ϐinding out about any speciϐic act of
the responder that occurred within a randomly selected sample of a given size
of the responder’s interactions.5 This allows proposers multiple chances of ob‑

4I use this slightly cumbersome term to avoid confusion with the “informational equilib‑
rium” concept due to Riley (1979).

5This scheme is superϐicially similar to the one used in the agent‑basedmodel inNowak et al.
(2000), where agents have a given probability of observing any of the interactions that have
taken place in the current evolutionary generation, with the total number of interactions per
generation ϐixed, so it acts like a variable‑size sample. However, agents in their model record
historical instances of past behaviour within a timeframe as generated by their computer sim‑
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serving a particular action as well as the possibility of observing multiple dis‑
tinct actions (e.g. the responder rejected X and also accepted Y) at the same
decision point.

The general framework allows all possible combinations of all possible out‑
comes of individual interactions to inϐluence proposer behaviour. For example,
even in the two‑offerminigame, in themost general case, the following possible
outcomes from single interactions can occur:

• Accepted L (negative reputation)

• Rejected L (positive reputation)

• Accepted H

• Rejected H

I call each of these bits of information a signal. Each of them, or any subset
of them (including none) can make up an information bundle, called a signal
set, available to a proposer when the proposer has to choose an offer. The pro‑
poser’s strategy set becomes the set of possible mappings from the set of pos‑
sible signal sets to possible offer amounts. Without restriction, there would
therefore be 24 = 16 distinct proposer strategies even in this simpleminigame.
Naturally, not all possible signals, signal sets or proposer strategies are reason‑
able or interesting, so restrictions can be applied tomake the analysis tractable
and computer simulations (of a deterministic evolutionary systembased on the
framework) feasible.

Among the signals above, we see not only one that indicates a negative rep‑
utation, as considered by Nowak et al. (2000), but also one indicating a posi‑
tive reputation: proposersmaywant to increase their offers to responders they
know to have rejected a low offer. As will be shown, an evolutionary model
based on positive rather than negative reputations in the ultimatumgame gives
entirely different dynamics and results, so a holistic analysis needs to consider
both kinds of reputation.

After presenting key conceptual ideas (section 4.2) and the general infor‑
mation framework (section 4.3), the framework is used to generate a series of
minigame models that are analysed in detail. The ϐirst model includes only the
negative reputation signal, which yields an endogenous information variant of
the Nowak et al. (2000) minigame. In section 4.4, I demonstrate how the en‑
dogenous information equilibrium for this game can be explicitly solved. I also
show that under endogenous information, both players’ expected payoffs are
inϐluenced not just by their own strategy choices but also by the distribution
ulation, while inmy framework, information at every point in time is the calculated probability
distribution over the possible knowledge states a proposer can hold for any responder.
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of proposer strategies, which determines the probability of the signal being ob‑
served. I also consider the implications of endogenous information on stability
of equilibria, an issue already alluded to above. This section also investigates
the conditions required to ensure that the information state can be uniquely
determined. This generally requires that at least a small frequency of all possi‑
ble proposer strategies are present, which can be achieved simply by adding a
small mutation rate to an evolutionary model.

In section 4.5, deterministic computer simulation results based on noisy
replicator dynamics are presented for a series of minigames – negative repu‑
tation, positive reputation and a model that combines both – analysing evolu‑
tionary trajectories, equilibria and stability in each case. The results show that
the two types of reputation both have important and complementary roles in
explaining relatively egalitarian outcomes in the ultimatum game. The section
ends with a brief exploration of larger models including a model with more
than two possible offer amounts, where more sophisticated ways of exploiting
information is possible, and the ϐinal section concludes.

4.2 The value of reputation
In economics literature, the concept of reputation is often used together with
concepts like trust and commitment. Trust is a willingness to take a risk in
which a favourable outcome hinges on another agent’s behaviour complying
with an agreement or rule, even if it will not be in the other agent’s best interest
to comply. Commitment is a decision to act in a certainway, even if at that point
it would not be the decision‑maker’s optimal decision. Both trust and commit‑
ment are tied to future actions, both can lead to current beneϐits for one (or
both) players; and in both cases a similar dilemma arises – how can a person
convince others that she will comply with the required behaviour, given that it
will be against her interest at the later time?

Schelling (1956) describes a wide‑ranging array of devices bywhich the de‑
sired credibility could be established in bargaining situations, including meth‑
ods to reduce future freedom to act or make non‑compliant actions costly, e.g.
delegation, contracts and penalties of various kinds. In some of these meth‑
ods, the concept of reputation plays an important role, especially in the sense
of one’s reputation acting as a bond that is posted to ensure that promises are
kept: “if the buyer can assert that he will pay no more than $16 000 so ϐirmly
that he would suffer intolerable loss of personal prestige or bargaining repu‑
tation by paying more, and if the fact of his paying more would necessarily be
known, and if the seller appreciates all this, then a loud declaration by itself
may provide the commitment” (p. 284).

The strategies Schelling describes are deliberate, calculated, clearly com‑
municated and understood by the other party, which is quite different to the
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instinctive behaviour seen in ultimatum game experiments, where responders
simply have an emotional preference for rejecting unfair (or rude6) offers. Nev‑
ertheless, the value people attach tomaintaining their reputations could still be
a part of the ultimate explanation for why the behaviour we see evolved, pro‑
vided it can be shown that the strategy can actually work in typical bargaining
situations faced by people in everyday life (or faced by them in the past).

From an economist’s perspective, the key aspect of reputation is that it is a
type of information about a person’s conduct that could affect howother people
interact with that person, and the person may therefore have some interest in
what information gets transmitted.7 Reputation could affect not only the con‑
duct of another player in a bargaining interaction, but also the choice of whom
to bargain with,8 what roles players adopt (e.g. who gets to be the ϐirst mover)
and what rules to follow. Consider, for example, the situation where players
could choose whether or not to engage in an ultimatum game interaction with
another person. If there were no opportunity costs, there would be no reason
to decline any opportunity to interact, as theworst that could happenwould be
a payoff of zero. But if there were some opportunity cost, e.g. interacting with
A means not immediately being able to interact with B, then players could use
reputational information to decline interactions where there is a reasonable
prospect of a poor outcome. Effectively, players would be “shopping around”
for a good bargain. Proposers may have to adjust their offers to ensure getting
chosen by responders for a transaction, or responders may have to adjust their
acceptable offers to be selected by proposers. If there were many sellers (pro‑
posers) as well as buyers (responders), the price might settle at a competitive
equilibriummarket‑clearing level.

Despite considerable added complexity, this “ultimatum marketplace” con‑
cept is a promising avenue for further research to explain observed behaviour
in ultimatum games, because in the real world people do have some control
over who they interact with and there are likely signiϐiant opportunity costs.9

6See Camerer and Thaler (1995, p. 217).
7The term reputation sometimes refers directly to information about the quality of a per‑

son’s abilities or a product’s quality, rather than conduct per se, e.g. Rogerson (1983); Jackson
(2005); Dellarocas (2006). Nevertheless, strategic concerns, e.g. whether to improve quality,
or whether to hide or reveal information, and under what conditions the information can be
regarded as credible, always seem to be salient.

8Reputation as a device to regulate partner choice and thus enable trading systems to func‑
tion is an important theme in historical institutions literature (Milgrom et al., 1990). In law
and economics, reputation could be related more to a general assessment of a person’s moral
character, but the end result is similar: “A good reputation implies that people are eager to
transact with the individual, and a bad one that they are averse to transacting with him. Rep‑
utation affects the individual’s wealth by determining the terms that people will offer him in
transactions.” (Posner, 1978, p. 11)

9The theory would be that evolution has sculpted human behaviour to work well in envi‑
ronments where walking away from a bad deal can be sensible because in the real world there
are generally better outside options available. This could explain why responders feel justi‑
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The problem, however, is that if agents could choose who they interact with,
it takes the sting out of the ultimatum game, perhaps to the point where the
essence of the game, namely the extreme inequality in roles, is lost. If we allow
a responder to “reject” a proposer before the proposer has even made an offer,
we may be changing the interaction too drastically for it to remain a recognis‑
able ultimatum game.

Perhaps the ultimatum game is artiϐicial by design. However, it captures an
important aspect of many real‑world interactions: the inequality of power and
institutions that determine bargaining rules that favour one agent above an‑
other – something humans must have evolved strategies to recognize and deal
with. If we are to retain this aspect, we need to focus on interactions that are
random and compulsory, where roles are ϐixed,10 and there is no marketplace.
Under these conditions, there seems to be no obvious role for proposers’ repu‑
tations – their offers are on the table when responders choose to accept or re‑
ject, so whatmore information about them could be relevant to responders’ de‑
cisions?11 On the other hand, since respondersmove second, proposers should
be interested in what offers the responders are likely to accept. Knowledge of
the responders’ past interactions could be informative, and responders should
therefore value the kind of reputation that results in favourable offers.

4.2.1 The classical perspective: repeated games
The standard approach to modelling reputation in classical game theory uses
the framework of repeated games. Here, the original game becomes a stage
game that is played repeatedly, and players’ strategies are mappings from com‑
plete histories to stage game actions (Mailath and Samuelson, 2006, p. 19). Var‑
ious folk theorems show that in such settings there are generally many equilib‑
ria, including equilibria where players can incentivize other players to play cer‑
tain actions using threats and/or promises about their own future behaviour.
ϐied in rejecting low offers – they instinctively feel that they could get a better deal. Of course,
in a typical experimental design, such better offers will not be forthcoming, so there may be
disappointment.

10Another avenue through which reputations could matter if roles are not ϐixed is positive
reciprocity. A person known to make generous offers in the proposer role may attract gener‑
ous offers by other proposers when in the responder role. See Fehr and Gächter (2000) for a
general discussion and arguments suggesting that reciprocal motives are widespread in many
contexts in which humans interact. Zhang et al. (2023) include reputations for proposers in
the ultimatum game in their model, motivated by the notion of indirect reciprocity.

11Could a proposer develop a reputation for toughness in the sense of making low proposals
even to a responder that is known to reject low offers? Could such a strategy be effective in
persuading responders to capitulate, their bluff thus being called? If so, a responder would not
really need to have knowledge of past interactions of the proposer, because the low offer on
the table should already be a clear indication of the proposer’s intransigence. More important
is that the responder knows what the proposer knew when making the offer. While this is an
intriguing possibility, it will not be pursued in this chapter.
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The most well known example is the repeated prisoners’ dilemma, where it is
easy to show that it can be optimal for players to cooperate rather than defect,
provided backwards induction cannot be used, so the theory requires inϐinite
repetitions or that the end is stochastic and therefore unpredictable.

It is straightforward to apply a similar treatment to the ultimatum game.
Consider a simple minigame example, where the surplus to be divided is 4, the
proposer has two possible offers, 𝑆𝑃 = {H, L} = {2, 1} and the responder has
the same two amounts asminimum acceptable offers (demands). The strategic
form of this game is represented in table 4.2.1. In the once‑off game, there are
two Nash equilibria (NE), (H, H) and (L, L), while only the latter is subgame
perfect if it is taken into account that the proposer moves ϐirst.12

Responder
H L

Proposer H 2, 2 2, 2
L 0, 0 3, 1

Table 4.2.1: Strategic‑form representation of an ultimatumminigame

Suppose the game is repeated inϐinitely. Consider the strategyproϐile (CH,H),
where CH means the proposer plays a default action of H every round, unless
the responder was ever observed accepting an L offer, in which case the pro‑
poser switches to L every round. The responder simply plays H every round.
If ever a subgame in which L was offered was reached, the responder would
face a tempting deviation from her strategy of rejecting low offers. Accepting
instead would gain 1 − 0 = 1, but lose 2 − 0 = 2 in every subsequent round,
assuming the deviationwas perfectly observable by the responder and that the
proposer’s action was a one‑shot deviation, so in future rounds both players
return to their stated strategies. Alternatively, the responder can switch to ac‑
cepting low offers permanently, in which case the initial gain is still 1 but the
subsequent losses would be 2 − 1 = 1 per round. In both cases, the sum of
losses exceeds the gain, so a rational responder would not deviate. The pro‑
poser would also not deviate since, given the responder strategy, the proposer
can only lose bymaking L offers thatwould be rejected, so CH is a best response.
Thus, (CH,H) is a subgame‑perfect Nash equilibrium (SPNE). The result could of
course be different if we incorporated a high discount rate for the responder:
the immediate gain from accepting a low offer could then outweigh the eternal
losses that would follow.

12The strategy of demanding H for the responder is irrational in the subgame that follows
once the proposer chose L.
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In this simple example, we clearly see the rationale for reputation in the
ultimatum game, but there are several concerns. The most immediate prob‑
lem is that we are not necessarily interested in a repeated game scenario as it
would be a poor proxy for modelling once‑off interactions.13 But the repeated
game can also be interpreted as a ϐixed responder interacting repeatedly with
different proposers (see Mailath and Samuelson, 2006, p. 19), in which case
the game might seem somewhat more like a one‑shot interaction to the par‑
ticipants, though with the requirement that proposers have knowledge of the
responder’s past interactions with other proposers. Even if past interactions
could be observed only imperfectly, there would still be a SPNE in which low
offers would be rejected if the probability of discovery were high enough and
the responder’s discount rate low enough. Perhaps evolution has sculpted be‑
haviour that implicitly recognizes the risk of any action becoming part of one’s
public record, even if the framing of the situation suggests that it is a one‑shot
interaction.

Another major problem in this simple model is that there is never any real
information revelation – observed instances of low offers getting rejected is
zero – thus the equilibrium is supportedbyhypothetical behaviour that is never
actually observed – effectively an assumption on the part of proposers main‑
tained throughout inϐinite repetitions of the same game. There are more so‑
phisticated repeated‑interactions models in which the one player has a degree
of uncertainty about the other player’s utility function, and updates beliefs us‑
ing Bayes’ rule (Kreps and Wilson, 1982, Milgrom and Roberts, 1982, Kreps
et al., 1982, Mailath and Samuelson, 2006, p. 460). In the ultimatum game, this
would entail a (possibly small) probability of the responder being a committed
type, whowould always reject lowoffers. A “normal” responder could then ϐind
it worthwhile tomimic the committed type, beingwilling to suffer the costs of a
number of initial rejections because this would cause proposers to believewith
sufϐicient probability that the responder would reject low offers, thus making
high offers a best response. While this gives a more concrete role to informa‑
tion, in the steady‑state long‑run equilibria there is likewise no further ϐlow of
information.14

Adding some kind of noise (e.g. trembles or observation errors), so that re‑
sponders occasionally see low offers, could help to test the robustness of the
equilibrium and illustrate revelation of information. What would still be miss‑

13AsAkdeniz andVanVeelen (2021, p. 4) put it, “it is somewhat hard to reconcile the idea that
people have a hard time differentiating between repeated and one‑shot gameswith the ϐinding
that people can and do differentiate rather accurately between repeated games with high and
with lowprobabilities of repetition [in experiments]”. See also Fehr and Schmidt (2006, p. 629).

14Another issue is that equilibria in these models are foreseeable by both players, so deter‑
rence is typically effective from the ϐirst round, hence there is no actual information revelation
at any stage; for example Kreps andWilson (1982, p. 262). Somemodels may have mixed equi‑
libria though.
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ing is an account of how the players arrive at their equilibrium strategies, and
whether it is possible for boundedly rational agents to learn to behave in such
a way. And if low offers are infrequent and arise only because of noise, is the
information they generate sufϐicient for proposers to stick with their strate‑
gies? There is also the problem of equilibrium selection. In addition to the
equilibrium in which reputation matters, there is an alternative equilibrium in
repeated games, the familiar SPNE, (L,L), played every round. In fact, the folk
theorem tells us there is generally a plethora of equilibria in repeated games,
including in mixed strategies. Is it possible for responders, in an environment
where the norm is that low offers are made and accepted, to improve their situ‑
ation by building a reputation? Would there be enough information of the right
kind, at the right time for high‑offer equilibria to be reachable, under various
initial conditions? Answering such questions calls for an evolutionary analysis.

4.2.2 Evolutionary models
Evolutionary models can account for the development of heuristic behaviours
that are well‑adapted to the behaviour of other agents without requiring so‑
phisticated rational reasoning. Such behaviour seems more suited to explain
observed behaviour in ultimatum games, where responders appear to be moti‑
vated by ingrained emotional reactions when rejecting low offers, rather than
rational forward‑looking calculations of the effects on their behaviour on their
reputations and future payoffs. Another reason to use evolutionary models is
that they can give insight in terms ofwhich equilibria can be reached andwhich
are stable, which is especially valuable in situations where multiple plausible
equilibria exist without clear reasons to focus on any particular one.

An evolutionary theory about the effects of responder reputations in the UG
requires a plausible account for howproposers come topossess credible knowl‑
edge about responders. In the existing literature featuring evolutionarymodels
of the UG, rather arbitrary assumptions on the availability of information have
beenmade. In Nowak et al. (2000)’s ϐirst model (the minigame), offer amounts
are simply reduced by a constant valued parameter when facing a responder
who would accept a low offer. Güth and Napel (2006) assume that proposers
know responders’ utility functions without uncertainty. Akdeniz and Van Vee‑
len (2023, p. 581) assume that, with a ϐixed probability, proposers know their
counterpart’s strategy. Interestingly, they claim that, since reputation is not
strictly necessary for commitment, and there are other means by which pro‑
posers can predict rejecting behaviour of a committed responder,15 theirmodel
is justiϐied as being more general. In Poulsen (2007), the focus is on the value

15This includes picking up responders’ behavioural cues that accurately reveal emotional
commitment, for which there is some empirical evidence. See also Akdeniz and Van Veelen
(2021, p. 14) and Frank (1988, p. 169).
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of information to proposers. Two models are offered; in the ϐirst, there is ϐixed
probability of a responder learning about a responder’s strategy, similar to the
last model, while in the second model, proposers can pay an exogenously ϐixed
fee to learn the responder’s acceptance threshold. This model has endogenous
information because information depends on proposers’ decisions to buy infor‑
mation, but the information they buy is the responders’MAO strategies directly,
rather than their histories of past interactions, so there is still no explicit link
between interactions taking place and proposers’ available information.16

Thesemodels demonstrate that credible information, if available, can result
in higher offers and demands, but full explanations aboutwhere the knowledge
comes from, why it is credible, etc., are suggestive rather than integrated into
themodels. Tomy knowledge, there are only two exceptions, where the source
of information is made explicit. The ϐirst is Nowak et al. (2000)’s secondmodel,
which uses a computer simulation to track 100 individual agents and the infor‑
mation they gather on accepted proposer offers. Here, the links between past
behaviour and information is credible and concrete. Information is endogenous
because the probability with which responder strategies can be discovered is
linked to the probability that they will receive low offers. However, the descrip‑
tion and analysis of results in their paper is very compact and only one type of
reputation ismodelled. Furthermore, since themodel is implemented by agent‑
based simulation, deterministic results cannot be obtained from it, which hin‑
ders full analysis of causal mechanisms, stability and general implications. The
second is a model by Zhang et al. (2023), who investigate whether speciϐic (ex‑
ogenously speciϐied) social norms can lead to the emergence of fairness (equal
divisions) in theultimatumgame. Adherence to the social normgives an agent a
good reputation, which can then result in others behaving favourably towards
him. One of the norms they consider is that responders should reject low of‑
fers, and a reputation based on this norm can only be obtained by responders
who receive low offers, which therefore qualiϐies as endogenous information.17
However, the focus of their research is not on the value of the information an
agent canobtain via their opponent’s reputationper se, but rather on thenotion
of indirect reciprocity, i.e. the use of reputations to effect collective punishment
of social‑norm violators.18

16Their results are interesting: if costs are not too high, proposers buy information, which
gives responders an incentive to raise their demands, to the ultimate collective detriment of
proposers.

17They do not refer to the concept of endogenous information in their paper, though it is
implicit in the “reputation dynamics” section (p. 3).

18In addition to the aforementioned norm for responder behaviour, they consider numer‑
ous relatively complicated (“third‑order”) norms related to the behaviour of proposers. For
example, a proposer might gain a bad reputation by failing to punish another proposer who
made a high offer instead of a low offer to a responder with a bad reputation. Interestingly,
none of the more complicated norms they consider are as effective as the simple responder’s
norm of rejecting low offers at raising aggregate “fairness levels”. There are many other note‑
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4.3 A general framework for endogenous
information

In this section, a theoretical speciϐication for an ultimatum population game19
with endogenous information is developed, which will form the basis for evo‑
lutionary analyses in sections to follow. It will be seen that the framework is
general, and could be adapted to other sequential games with two players, the
ϐirst player’s behaviour being contingent on imperfectly observed information
about the second player’s past behaviour. To avoid unnecessary abstraction,
I will use terminology appropriate to the ultimatum game. The framework de‑
ϐines how reputational information is represented, how information ϐlows from
a pattern of interactions in the population, and it derives expected payoffs for
playerswith a given pair of strategies in a once‑off game, given population strat‑
egy frequencies. In subsequent sections, these expected payoffs will then be
used as the basis for evolutionary models.

The interactions driving information is to be understood as having occurred
in a shared socio‑economic environment, so that the ϐirst player (the proposer)
may have some probability of learning about some past interactions involving
the second player (the responder), by direct observation, word‑of‑mouth or
other means. There are two populations, a population of proposers and a pop‑
ulation of responders. The populations need not be interpreted as mutually
exclusive real‑world groups of people – an “individual” in a population merely
represents an instance of a speciϐic way of behaving in a speciϐic role; a real per‑
son may have multiple roles. The payoff to a player is the expected payoff from
an interactionwith a randomly selectedmember of the opposite population, im‑
plying that populations are inϐinitely sized, and lack any structure determining
who interacts with whom.
worthy differences in their methods as compared to mine. They do not consider reputational
information using generalized formulations (relying instead on exhaustive calculations for all
possible combinations of reputations and strategies), they only include two reputational states
– an agent is either “good” or “bad” – and past actions are perfectly observable. This means
that there is never “no reputation” and their model can therefore not be used to investigate
a concern highlighted in this research, namely that the effectiveness of the reputation mecha‑
nism may be inhibited by lack of information. Moreover, they model their dynamic system as
a Markov process that transitions between states characterized by monomorphic populations
(using role‑contingent strategies), hence the dynamics they consider are limited to a small num‑
ber of states and transitions always occur along a single dimension at a time. This would there‑
fore exclude thepossibility ofmany interestingdynamic phenomena such as themixed‑strategy
evolutionary equilibrium considered in section 4.5.4.

19Sandholm (2015, p. 705) deϐines population games as models “in which the number of
agents is large, each agent is small, and agents are anonymous, with each agent’s payoffs de‑
pending on his own strategy and the distribution of others’ strategies ... One typically imposes
further restrictions on the agents’ diversity: there are a ϐinite number of populations, and
agents in each population are identical, in that they choose from the same set of strategies and
have identical payoff functions.”
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The crux of the endogenous information approach is to recognize that, for
given strategy distributions of both populations, there is interdependence be‑
tween information and actions. The ϐirst players’ strategies specify actions to
take in response to available information on the second player’s behaviour pat‑
tern (i.e. reputation). The second players’ strategies specify actions to take in
response to the ϐirst players’ actions. Conversely, the pattern of actions thus in‑
duced determines what information is available. This suggests a dynamic pro‑
cess, where actions and information continually adjust to each other until they
converge to a steady state, where the information available to the ϐirst players
induces exactly the action pattern that generates the same information. This
conϐiguration can be called an endogenous information equilibrium.

The equations below specify how prior information, which are in the form
of probability distributions over signal sets for each responder type, induces
a pattern of actions, which, if sampled according to the speciϐied procedure,
results in the posterior information available to proposers. An endogenous in‑
formation equilibrium occurs when prior and posterior information coincides,
so that the system has reached a ϐixed point. The system of equations implicitly
deϐines information as a function of strategies.

Reaching an endogenous information equilibrium may potentially require
many iterations – rounds of play and information updating – before players
with a given strategy have built up a stable reputational proϐile. In this frame‑
work, however, this iterative process is considered a short‑run process. From
an evolutionary time perspective, the process concludes instantaneously. This
means that each agent’s strategies as well as aggregate strategy frequencies
can be regarded as ϐixed during the process of adjustment to an endogenous in‑
formation equilibrium.20 The long‑run evolutionary process depends only on
average payoffs for given strategies at each point in (evolutionary) time after
information and actions have converged to an endogenous information equilib‑
rium. In short, populations are large, the number of interactions is high, infor‑
mation adjusts quickly and evolution is slow. Henceforth, any reference to time
should be understood as referring to the evolutionary timescale, unless noted
otherwise.

4.3.1 Representing information
Proposers have a ϐixed probability of ϐinding out about any speciϐic act of the
responder that occurred within a randomly selected sample of a given size of
the responder’s previous interactions. To make the nature of information that

20This assumption was formulated independently in this research, but was subsequently
found to be similar to Zhang et al. (2023, p. 3). Key differences between the two approaches are
mentioned in footnote 18. In particular, their information equilibrium is deϐined as the steady‑
state distribution of a Markov chain that accommodates only two types of reputation and two
strategies (at a time).
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the framework generates precise, we ϐirst need to specify what can occur in an
interaction that can be observed, bearing in mind that full strategies cannot be
observed, at least not directly. Proposers choose anaction𝑎𝑃 from theproposer
action set 𝐴𝑃 ⊂ ℝ>0, which will be the set of possible offers that proposers
canmake in the ultimatum game.21 Responders then choose an action 𝑎𝑅 from
the responder action set 𝐴𝑅 = {1, 0} where the action 1 indicates acceptance
of the offer and 0 indicates rejection. An observer of this interaction would
therefore see the action proϐile (𝑎𝑃, 𝑎𝑅), which is the basic unit of information
that a single interaction can generate. For example, (4, 1) would indicate that
an amount of 4 was offered to the responder and the responder accepted the
proposal.

Suppose before every interaction, a random sample of 𝑧 ≥ 0 past interac‑
tionsof the responder is drawn. Note that this sample is taken from interactions
occurring at the present stage of evolutionary time, so they reϐlect the current,
ϐixed strategy distributions. For each interaction in the sample, the outcome
(𝑎𝑃, 𝑎𝑅) for that interaction can be observedwith a probability of𝛼 ∶ 0 ≤ 𝛼 ≤ 1.
This scheme clearly reϐlects partial observability of past results. It allows a
proposer to observe results frommultiple past interactions of the proposer, or
none at all. If an outcome (𝑎𝑃, 𝑎𝑅) is successfully observed, it becomes a signal.
This term “signal” is used here in a generic sense to mean a quantum of infor‑
mation, though the connotation from the signalling literature of a costly action
that transmits information about a player’s type is not entirely inappropriate.22

Given the above, the set of possible signals 𝑀 is a subset of the Cartesian
product of the two players’ action sets,

𝑀 ⊆ 𝐴𝑃 × 𝐴𝑅 .

This full set of possible signals therefore contains two elements for every
possible offer in the game, one for the signal where the amount was accepted
and one for where it was rejected. The elements of 𝐴𝑃 ×𝐴𝑅 to include in𝑀 is a
modelling choice, similar to the choice ofwhat offer amounts to include in𝐴𝑃. It
is often desirable not to work with the entire set of possible signals for reasons
of analytical convenience and to reduce computational intensity of simulations.

21Zero is not allowed as an offer. If zero were included, then the proposer offering zero and
any strategy of the responder would be a NE.

22To avoid confusion, note the following differences: Firstly, In the signalling literature,
“type” usually refers to preferences over action proϐiles; here it refers to phenotype in the evo‑
lutionary game theoretic sense, equivalent to “strategy”. Secondly, here, the action does not
always succeed in transmitting information to a particular opposite party, it only does so prob‑
abilistically. On the other hand, the action’s effects may be transmitted to a potentially large
number of future bargaining partners. Thirdly, here, all actions available to the responder can
result in signals being sent, not only costly ones with beneϐicial future effects. Finally, in sig‑
nalling games, the signalling player’s choice to send a signal is typically the ϐirst move of the
game, while here it comes from past interactions (though of course one can conceive of all the
interactions together as a multi‑player supergame).
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Later, I investigate models with negative and positive reputations separately
before I consider a model that contains both signal types. Some signals may be
of no interest to proposers, or impossible to observe for any responder strategy,
e.g. the signal that the highest possible offer was rejected, so excluding such
signals would be sensible simpliϐications.

When a proposer has to choose an offer amount, she will have received a
set of signals 𝑞 ∈ 𝑄, where the set of all possible signal sets 𝑄 is a subset of the
set of all possible subsets – the power set – of𝑀,

𝑄 ⊆ 𝒫(𝑀),
where 𝑞 ∈ 𝑄 if there is at least one responder type that can exhibit 𝑞. For
example, 𝑞 could be {(2, 0), (4, 1)}, indicating knowledge that the responder
rejected an offer of 2 and accepted an offer of 4.23 It is assumed that duplicate
signals carry no additional information. For example, if a proposer observes
the sequence (No signal), (4, 1), (4, 1) for a given responder, the signal set from
which a decision is to be made is simply 𝑞 = {(4, 1)}.24

𝑄 should include all feasible elements of 𝒫(𝑀), where feasible means at
least one responder type is able to generate the combination of signals from
random interactions with proposers under any information condition. Not all
signals can co‑exist in the same signal set, for example {(4, 1), (4, 0)} does not
need to be included in 𝑄 as it indicates that the responder accepted 4 and also
rejected 4, which is impossible unless mixed strategies were allowed (which
I do not in this chapter) or strategies could change while being sampled (also
not allowed). Furthermore, if responder strategies are monotonic minimum
acceptable offer (MAO) strategies, signal sets like {(2, 1), (4, 0)} may also be
excluded from 𝑄 as there would be no possibility of a proposer having such
knowledge. Including infeasible signal sets in 𝑄 is not invalid, but can generate
a large number of unnecessary proposer strategies (see below) that can com‑
plicate analysis and computation. If 𝛼 < 1 there is always the possibility that
no signal at all is received, in which case the proposer’s knowledge is given by
the empty set {} which must always be included in 𝑄. The ϐirst two minigame
models analysed in this chapter only include {} and a single signal in 𝑄.

It should be clear by now that each proposer strategy is amapping from sig‑
nal sets to offer amounts, 𝑠𝑃𝑖 ∶ 𝑄 ↦ 𝐴𝑃. The strategy sets can thus be speciϐied:

𝑠𝑃𝑖 ∈ 𝑆𝑃 ⊆ (𝐴𝑃)𝑄
23A signal set can be seen to contain exactly one binary bit of information for each possible

signal in𝑀 – a signal is either includedor excluded froma signal set. If therewere eight possible
signals, e.g. four possible offer amounts, a signal set would contain one byte of information.

24This would not be an appropriate assumption if mixed strategies were allowed, in which
case multiple observations of the same outcome could be interpreted statistically to estimate
the responder’smixed strategy. Note also how important it is for the responder’s strategy to re‑
main constantwhile being sampled –without this, proposerswould have a considerably harder
task interpreting the data.
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𝑠𝑅𝑗 ∈ 𝑆𝑅 ⊆ 𝐴𝑃

where 𝑖 and 𝑗 are index variables enumerating the strategy sets and (𝐴𝑃)𝑄 con‑
tains all possible (𝑞, 𝑎𝑃) pairs. 𝑆𝑃 and 𝑆𝑅 are shown as subsets because the
strategies to include in a speciϐic model are also modelling choices and it may
be desirable to work with restricted strategy sets. 𝑠𝑃𝑖 (𝑞) then returns the offer
that proposer strategy 𝑠𝑃𝑖 makes to a responder given signal set 𝑞. Responder
strategies are simply an amount, interpreted as a minimum acceptable offer
(MAO) and drawn from the same set as proposers’ possible offers. It would ob‑
viously also have been possible to specify responder strategies in a more gen‑
eralway by dropping themonotonicity assumption. The responder strategy set
could then be speciϐied as the power set of offer amounts, with each strategy
being the set of offers to accept. This is not necessary for the objectives of this
chapter, but could be explored in future work.

4.3.2 What information is generated?
In order to eventually determine expected payoffs for both players, given strate‑
gies, we will ϐirst need to calculate, for each responder type 𝑗, the probability
distribution over signal sets that results from sampling 𝑧 past interactions of
that responder type, with each sampled interaction’s outcome being observed
by the current proposer with a probability of 𝛼.25 Let 𝑦𝑗(𝑞) be the probability
with which a proposer’s knowledge about a responder of type 𝑗 is constituted
by the signal set 𝑞. Recalling that the empty signal set {} is included in 𝑄, we
must have,


𝑞∈𝑄

𝑦𝑗(𝑞) = 1.

We know that the responder can get information on a sample of 𝑧 interactions
of the responder. If 𝑦𝑛𝑗 (𝑞) is deϐined as the probability of observing signal set
𝑞 from 𝑛 samples of a responder with strategy 𝑗’s interactions, then 𝑦𝑗(𝑞) =
𝑦𝑧𝑗 (𝑞), and 𝑦1𝑗 (𝑞) is the probability of observing signal set 𝑞 from a single sam‑
ple. From a single interaction, the only signal sets that can be observed are
those containing a single, or zero signals. This leads to

𝑦1𝑗 ({𝑚}) = 𝑦1𝑗 (𝑚) (4.1)

𝑦1𝑗 ({}) = 1 − 
𝑚∈𝑀

𝑦1𝑗 (𝑚) (4.2)

25A proposer would in principle be sampling from the history of the speciϐic responder he
is interacting with, but the average probability of any signal from a random responder of a
given type would be the same as that generated for the type overall. One could think of each
responder strategy being represented by a single individual, with sampling taking place from
that individual’s interaction history once there has been enough interactions for the statistical
distribution over outcomes in it to converge.
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This indicates that the probability of observing a signal set containing a sin‑
gle signal𝑚 in a single interaction is equal to the probability of observing that
signal in a single interaction,26 and that the probability of observing an empty
signal set in a single interaction is the complement of the combined probability
of observing one of the signals in a single interaction’s outcome. The probabil‑
ity of observing, in a single interaction, any signal sets containing more than
one signal is zero, but this case will be dealt with using more general formulae
below.

In a single interaction, a given responder with strategy 𝑠𝑅𝑗 will be paired
with a random proposer and the proposer will see a random signal set, so ex‑
pectations need to be taken along two dimensions to calculate 𝑦1𝑗 (𝑚):

𝑦1𝑗 (𝑚) ∶= 𝛼
𝑖


𝑞∈𝑄

𝑥𝑃𝑖 𝑦𝑗(𝑞)𝐼(𝜓(𝑠𝑃𝑖 , 𝑠𝑅𝑗 , 𝑞) = 𝑚) (4.3)

where 𝑥𝑃𝑖 is the relative frequency of proposer strategy 𝑠𝑃𝑖 (with∑𝑖 𝑥𝑃𝑖 = 1), 𝐼()
is the indicator function that returns 1 if the condition is true and 0 if it is false,
and

𝜓(𝑠𝑃𝑖 , 𝑠𝑅𝑗 , 𝑞) ∶= (𝑠𝑃𝑖 (𝑞), 𝑠𝑅𝑗 (𝑠𝑃𝑖 (𝑞))) (4.4)

returns a tuple that reϐlects the outcome from an interaction between a respon‑
derwith strategy 𝑠𝑅𝑗 and a proposerwith strategy 𝑠𝑃𝑖 observing signal set 𝑞. The
ϐirst component of the tuple is the amount offered by the proposer and the sec‑
ond component is 1 or 0 indicating acceptance or rejection. Since mixed strate‑
gies are not allowed, the outcome is fully deterministic for a given (𝑠𝑃𝑖 , 𝑠𝑅𝑗 , 𝑞).
Equation (4.3) adds up the weights of all possible combinations of 𝑠𝑃𝑖 and 𝑞
that results in outcome𝑚 for a 𝑠𝑅𝑗 ‑responder, andmultiplies this with the prob‑
ability that the outcome will turn into an observed signal, 𝛼. The 𝑦𝑗(𝑞) on the
RHS of the equation can be regarded as reϐlecting prior information, which the
function transforms into posterior information in the form of the 𝑦1𝑗 (𝑚) on the
LHS.𝑦𝑗(𝑞) itselfwill be deϐined as a function of𝑦1𝑗 (𝑚)below; together, the equa‑
tions require the prior and posterior to be equal, which deϐines an endogenous
information equilibrium.

It is worth emphasizing again that the endogenous information framework
being developed here does not depend on the ultimatum game’s payoff struc‑
ture or strategy sets, so other two‑player sequential‑move games with similar
information structure can be substituted.

26Tounderstand thedistinction, note that it isnot generally true, for example, that𝑦2𝑗 ({𝑚}) =
𝑦2𝑗 (𝑚). If a sample of two interactions were taken, the probability that𝑚 will be observed at
least once in one of the two interactions, 𝑦2𝑗 (𝑚), is not the same as the probability that𝑚 will
be the only signal observed in the sample, 𝑦2𝑗 ({𝑚}).
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We now know from equations (4.1) to (4.4) how to calculate the probabil‑
ity of any signal set being observed from a sample of responder’s interactions
when the sample size is one. In order to calculate 𝑦𝑗(𝑞), we must be able to
calculate 𝑦𝑧𝑗 (𝑞) for any sample size 𝑧 ≥ 1 and any 𝑞 ∈ 𝑄. This is an exercise
in probability calculus. Consider a generic example with four possible signals.
The probability of observing signal set 𝑞 = {𝑚1, 𝑚2} is the joint probability
of observing at least one𝑚1, observing at least one𝑚2 and not observing any
other signals (e.g. 𝑚3 and𝑚4) among the 𝑧 samples taken:

Pr[𝑞 = {𝑚1, 𝑚2}] = Pr[𝑚1 ∩𝑚2 ∩ ¬𝑚3 ∩ ¬𝑚4]

where Pr[𝑚] should be read as the probability of at least one instance of𝑚 oc‑
curring in the sample of size 𝑧 and Pr[¬𝑚] should be read as the probability
of zero instances of 𝑚 occurring in the sample of size 𝑧. The probabilities of
observing no instances of a signal, or of observing at least one (the latter’s com‑
plement) are straightforward,27 e.g.

Pr[¬𝑚3] = (1 − 𝑦1𝑗 (𝑚3))𝑧 (4.5)
Pr[𝑚1] = 1 − (1 − 𝑦1𝑗 (𝑚1))𝑧 (4.6)

The probabilities of neither of, or at least one of, two signals are also sim‑
ple,28 respectively,

Pr [¬𝑚3 ∩ ¬𝑚4] = Pr[¬(𝑚3 ∪𝑚4)] = (1 − (𝑦1𝑗 (𝑚3) + 𝑦1𝑗 (𝑚4)))𝑧 (4.7)
Pr[𝑚1 ∪𝑚2] = 1 − (1 − (𝑦1𝑗 (𝑚1) + 𝑦1𝑗 (𝑚2)))𝑧 (4.8)

These formulae extend easily for any number of signals. Deϐine

𝐾 ∶= 1 − 𝑦1𝑗 (𝑚3) − 𝑦1𝑗 (𝑚4)

as the probability of signals excluded from the signal set not occurring in a sin‑
gle sample,29 where 𝑦1𝑗 ( ) is as deϐined in equation (4.3). We can nowmake use
of the multiplication rule and the inclusion‑exclusion principle:

Pr[𝑞 = {𝑚1, 𝑚2}] = Pr[𝑚1 ∩𝑚2 ∩ ¬𝑚3 ∩ ¬𝑚4]
= Pr[𝑚1 ∩𝑚2|¬𝑚3 ∩ ¬𝑚4]Pr[¬𝑚3 ∩ ¬𝑚4]
27Theprobability of a signal not occurring in one interaction is independent of theprobability

of the signal not occurring in another interaction, so the multiplication rule for independent
events can be used.

28In a single sample any two signals aremutually exclusive so their probabilities canbe added
to get the probability of “either of them”, and the probability of “neither of them” is again the
complement. As with one signal, the probability of a group of signals not occurring in an inter‑
action is independent of the probability of it not occurring in another interaction.

29A more general deϐinition for 𝐾 will be provided below.



CHAPTER 4. GOOD AND BAD REPUTATIONS 94

= [𝑃𝑟[𝑚1|¬𝑚3 ∩ ¬𝑚4] + 𝑃𝑟[𝑚2|¬𝑚3 ∩ ¬𝑚4] − 𝑃𝑟[𝑚1 ∪𝑚2|¬𝑚3 ∩ ¬𝑚4]]
× Pr[¬𝑚3 ∩ ¬𝑚4]

= ൭1 − ቆ1 −
𝑦1𝑗 (𝑚1)

𝐾 ቇ
𝑧

൱ + ൭1 − ቆ1 −
𝑦1𝑗 (𝑚2)

𝐾 ቇ
𝑧

൱

−൭1 − ቆ1 −
𝑦1𝑗 (𝑚1) + 𝑦1𝑗 (𝑚2)

𝐾 ቇ
𝑧

൱൩𝐾𝑧

= ቀ𝐾𝑧 − (𝐾 − 𝑦1𝑗 (𝑚1))𝑧ቁ + ቀ𝐾𝑧 − (𝐾 − 𝑦1𝑗 (𝑚2))𝑧ቁ

− ቀ𝐾𝑧 − (𝐾 − 𝑦1𝑗 (𝑚1) − 𝑦1𝑗 (𝑚2))𝑧ቁ (4.9)
= Pr[𝑚1 ∩ ¬𝑚3 ∩ ¬𝑚4] + Pr[𝑚2 ∩ ¬𝑚3 ∩ ¬𝑚4]

− Pr[(𝑚1 ∪𝑚2) ∩ ¬𝑚3 ∩ ¬𝑚4] (4.10)

The solution is in the second‑last line (4.9); the last line has been added to illus‑
trate the logic of the inclusion‑exclusion principle: to ϐind the probability of the
intersection of two overlapping sets, one can subtract the probability of their
union from the sum of their individual probabilities. Figure 4.3.1 illustrates the
principle for the calculation of Pr[𝑚1 ∩𝑚2 ∩ ¬𝑚3 ∩ ¬𝑚4].

𝑚1∩
¬𝑚3 ∩ ¬𝑚4

𝑚1 ∩𝑚2∩
¬𝑚3 ∩ ¬𝑚4

𝑚2∩
¬𝑚3 ∩ ¬𝑚4

Figure 4.3.1: The inclusion‑exclusion principle for a signal set with two signals

These methods can be extended to calculate the probability of signal sets
with anynumber of signals, using applicable versions of the inclusion‑exclusion
principle. Notice in equation (4.10) that the last term relates to the probability
of the union of all of the signals in 𝑞, jointly with the non‑occurrence of all sig‑
nals not in 𝑞. This is the only term that relates to all of the included signals,
while all of the the other terms relate to the occurrence of subsets of the in‑
cluded signals (in the example, {𝑚1} and {𝑚2}). This pattern holds generally
and allows a recursive solution to the general problem.
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Before stating the general solution, the convenience symbol 𝐾 in the exam‑
ple needs to be generalized. Deϐine,

𝐾𝑗(𝐸) ∶= 1 − 
𝑚∈𝐸

𝑦1𝑗 (𝑚) (4.11)

which gives the probability of no signal in 𝐸 occurring in a single interaction.
The general solution for 𝑦𝑗(𝑞) then relies on the following recursive function:

Υ𝑗(𝐼, 𝐸) ∶= (−1)(|𝐼|+1) ቌ൫𝐾𝑗(𝐸)൯
𝑧 − ቌ𝐾𝑗(𝐸) −

𝑚∈𝐼
𝑦1𝑗 (𝑚)ቍ

𝑧

ቍ

+
|𝐼|−1


𝑔=1


𝐴∈൫ 𝐼𝑔൯

(−1)(|𝐼|+𝑔+1)Υ𝑗(𝐴, 𝐸) (4.12)

The function takes two sets as arguments, namely signals to include (𝐼) and sig‑
nals to exclude (𝐸), and returns the joint probability of the 𝐼‑signals occurring
and the 𝐸‑signals not occurring in a sample of 𝑧 interactions of responder strat‑
egy 𝑗. The ϐirst term captures the probability of the union of all of the 𝐼‑signals
occurring, jointly with the non‑occurrence of all the𝐸‑signals. According to the
inclusion‑exclusion principle, the sign for this term should be either positive or
negative, depending on whether there is an odd or equal number of elements
in 𝐼, hence a power of −1 factor is added. The rest of the terms needed for the
inclusion‑exclusion procedure are generated by iteration and recursion. For
each positive number 𝑔 of signals smaller than the number in 𝐼, the joint prob‑
ability of all 𝑔‑combinations of 𝐼 occurring and 𝐸 not occurring in a 𝑧‑sample
is added or subtracted, the sign alternating as 𝑔 increases. The formula works
correctly for anypositive number of signals in 𝐼, including one, inwhich case the
iteration and recursion fall away and the ϐirst term reduces to the joint probabil‑
ity of that signal occurring and 𝐸‑signals not occurring. In cases where |𝐼| > 𝑧,
the formula correctly returns zero as it is impossible to see more signals than
the sample size.

To see how the formula works, consider an example with three signals in‑
cluded and one excluded:

Υ𝑗({𝑚1, 𝑚2, 𝑚3}, {𝑚4})

= (−1)4 ൬ቀ1 − 𝑦1𝑗 (𝑚4)ቁ
𝑧
− ቀ1 − 𝑦1𝑗 (𝑚4) − 𝑦1𝑗 (𝑚1) − 𝑦1𝑗 (𝑚2) − 𝑦1𝑗 (𝑚3)ቁ

𝑧
൰

+ 
𝐴∈൫𝐼1൯

(−1)5Υ𝑗(𝐴, {𝑚4})
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+ 
𝐴∈൫𝐼2൯

(−1)6Υ𝑗(𝐴, {𝑚4})

= ൭1 − ቆ1 −
𝑦1𝑗 (𝑚1) + 𝑦1𝑗 (𝑚2) + 𝑦1𝑗 (𝑚3)

1 − 𝑦1𝑗 (𝑚4)
ቇ
𝑧

൱ ቀ1 − 𝑦1𝑗 (𝑚4)ቁ
𝑧

− Υ𝑗({𝑚1}, {𝑚4}) − Υ𝑗({𝑚2}, {𝑚4}) − Υ𝑗({𝑚3}, {𝑚4})
+ Υ𝑗({𝑚1, 𝑚2}, {𝑚4}) + Υ𝑗({𝑚1, 𝑚3}, {𝑚4}) + Υ𝑗({𝑚2, 𝑚3}, {𝑚4})

= Pr[(𝑚1 ∪𝑚2 ∪𝑚3) ∩ ¬𝑚4]
− Pr[𝑚1 ∩ ¬𝑚4] − Pr[𝑚2 ∩ ¬𝑚4] − Pr[𝑚3 ∩ ¬𝑚4]
+ Pr[𝑚1 ∩𝑚2 ∩ ¬𝑚4] + Pr[𝑚1 ∩𝑚3 ∩ ¬𝑚4] + Pr[𝑚2 ∩𝑚3 ∩ ¬𝑚4]

It can be seen in ϐigure 4.3.2 (in which it can be assumed that only the parts
of the sets that are not in 𝑚4 are shown) that this is the correct application
of the inclusion‑exclusion principle for three sets: start with the union of all
three sets, deduct the three circles, add back the three almond shaped two‑way
intersections and what remains is the Reuleaux‑triangle‑shaped, three‑way in‑
tersection in the middle that we wanted to calculate.

The Υ function can be used directly to calculate the probability of every sig‑
nal set 𝑞 ∈ 𝑄, with one exception: the empty signal set {}. The exception is due
to the fact that the inclusion‑exclusion principle is not clearly deϐined for zero
sets and the formula’s ϐirst term (which returns zero if 𝐼 = {}) has no sensible
meaning in such a case. Therefore,

𝑦𝑗(𝑞) ∶= ൝(𝐾𝑗(𝑀))
𝑧, if 𝑞 = {}

Υ𝑗(𝑞,𝑀 ⧵ 𝑞), otherwise. (4.13)

This deϐines an implicit function for 𝑦𝑗(𝑞) as both 𝐾𝑗() and Υ𝑗() depend on
𝑦1𝑗 (𝑚)which in turn depends on𝑦𝑗(𝑞) – see equation (4.3). Analytical solutions
for the system of equations including (4.3) and (4.12) may be feasible for sim‑
ple instances, while numerical solutions may be obtained more generally. The
computer simulations for the evolutionary models that follow in this chapter
embed these functions and use an iterative procedure to yield solutions at each
point in time as they are needed to calculate expected payoffs for proposers and
responders when information is endogenous (see section 4.5.2).

4.3.3 Expected payoffs
Having characterized information produced by random interactions, all that re‑
mains to be done is to specify expected payoffs given strategy frequencies. Start
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𝑚1

𝑚1 ∩𝑚2

𝑚1 ∩𝑚3

𝑚1 ∩𝑚2 ∩𝑚3

𝑚2 ∩𝑚3

𝑚3

𝑚2

Figure4.3.2: The inclusion‑exclusionprinciple for a signal setwith three signals

with the assumption that we already know how to relate action proϐiles to pay‑
offs, i.e. we know 𝜋𝑃(𝑎𝑃, 𝑎𝑅) and 𝜋𝑅(𝑎𝑃, 𝑎𝑅). For the ultimatum game, if the
full amount being divided is $, payoffs are ($ − 𝑎𝑃, 𝑎𝑃) if 𝑎𝑅 = 1 and (0, 0) if
𝑎𝑅 = 0. To get expected payoffs as a function of strategies, it is necessary to
take expectations over information:

𝜋𝑃(𝑠𝑃𝑖 , 𝑠𝑅𝑗 ) ∶= 
𝑞∈𝑄

𝑦𝑗(𝑞)𝜋𝑃(𝑠𝑃𝑖 (𝑞), 𝑠𝑅𝑗 (𝑠𝑃𝑖 (𝑞)))

𝜋𝑅(𝑠𝑃𝑖 , 𝑠𝑅𝑗 ) ∶= 
𝑞∈𝑄

𝑦𝑗(𝑞)𝜋𝑅(𝑠𝑃𝑖 (𝑞), 𝑠𝑅𝑗 (𝑠𝑃𝑖 (𝑞))) (4.14)

Note that informationavailable to aproposerdoesnotdependon theproposer’s
strategy, but does depend the frequency distribution over all proposer strate‑
gies through (4.3) – this is the sense inwhich information is endogenous in this
framework. Having completed the framework, speciϐic models can be gener‑
ated by it by selecting different money amounts, $, sets of possible offers, 𝐴𝑃,
possibles signals𝑀 and strategy sets 𝑆𝑃 and 𝑆𝑅 .
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4.4 A simple minigame with endogenous
information

In this section, we consider a minigame similar to Nowak et al. (2000)’s ϐirst
model, using the aforegoing section’s endogenous information framework. For
concreteness, I will use the values from table 4.2.1, i.e. a total money amount
to be divided of 4, and possible offers 1 (L) and 2 (H). This leads to four pos‑
sible signals and 24 = 16 possible signal sets, though for this simple example
I will include in 𝑀 only the one signal considered in Nowak et al. (2000)’s pa‑
per, namely the one indicating that the responder accepted a low offer, i.e. a
negative reputation. 𝑄 contains only the empty signal set and one signal set
containing the above‑mentioned signal.

This leads to four possible proposer strategies (i.e. mappings from𝑄 to𝐴𝑃).
To summarize,

$ = 4
𝐴𝑃 = {2, 1}
𝑀 = {(1, 1)}
𝑄 = {{}, {(1, 1)}}
𝑆𝑃 = {𝑠𝑃1 , 𝑠𝑃2 , 𝑠𝑃3 , 𝑠𝑃4 }

where

𝑠𝑃1 = ൝2, if 𝑞 = {}
2, if 𝑞 = {(1, 1)} (‘HH’) 𝑠𝑃2 = ൝1, if 𝑞 = {}

1, if 𝑞 = {(1, 1)} (‘LL’)

𝑠𝑃3 = ൝2, if 𝑞 = {}
1, if 𝑞 = {(1, 1)} (‘HL’) 𝑠𝑃4 = ൝1, if 𝑞 = {}

2, if 𝑞 = {(1, 1)} (‘LH’)

The ϐirst two strategies ignore the signal and offer 2 (H) and 1 (L) uncondition‑
ally, respectively. The third strategy is the sophisticated strategy of offering H,
except if it is known that the responder accepted L, in which case, offer L. This
is the strategy that corresponds to Nowak et al. (2000)’s proposer strategy of
offering ℎ−𝑎, i.e. the normal high offer “shaded” by deducting 𝑎 for responders
that accept low offers. The difference is that Nowak et al. (2000) condition on
the responder strategy while 𝑠𝑃3 conditions on available information. The last
proposer strategy is a “Robin Hood” strategy of offering H to those who would
accept L and L to those that demand H (which would then be rejected).30 The
game can be represented by table 4.4.1.

30The four proposer strategies identiϐied here do not correspond to the four proposer strate‑
gies in Nowak et al. (2000)’s minigame. The latter uses a symmetrized game in which a player
can take on both proposer and responder roles randomly, so strategies need to be role contin‑
gent. They do not include the strategies that I label HH and LH, which I also discard below.
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Responder
H L

Proposer

HH 2, 2 2, 2
LL 0, 0 3, 1

HL if q={} 2, 2 2, 2
if q={(1,1)} 3, 1

LH if q={} 0, 0 3, 1
if q={(1,1)} 2, 2

Table 4.4.1: Strategic‑form representation of an ultimatumminigamewith neg‑
ative reputations

Endogenous information is evident: the payoffs for the conditional strate‑
giesdependonwhether the (1, 1) signal (indicating that the responder accepted
a low offer) was received or not. Since an H‑responder can never emit this sig‑
nal, the relevant cells of the table have been left blank. As I will show, expected
payoffs for the various strategies can be calculated using equation (4.14).

For illustrative purposes, the game can be simpliϐied by eliminating two
weakly dominated proposer strategies.31 HH is weakly dominated by HL be‑
cause a proposer who makes low offers only to responders who have a reputa‑
tion of accepting them gains 1 if the signal is received and never risks rejection.
LH (“Robin Hood”) is weakly dominated by LL because it responds to informa‑
tion that a lowofferwill be acceptable by changing the offer toH. The simpliϐied
game is illustrated in table 4.4.2. Note for now that LL can be better than HL for
the proposer if the probability that the responder demands L is high and the
probability of the signal being received is low.

Responder
H L

Proposer HL if q={} 2, 2 2, 2
if q={(1,1)} 3, 1

LL 0, 0 3, 1
Table 4.4.2: Strategic‑form representation of an ultimatumminigamewith neg‑
ative reputations (simpliϐied)

We can see that (HL,H) and (LL,L) are both NE regardless of whether the
signal is received or not, but stability of both equilibria depends on the state of

31I include these strategies again in simulations (section 4.5.3), to seewhat effects their pres‑
ence has.
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available information. I will apply the deϐinitions for static evolutionary stable
strategies (ESS) for two groups in Cressman (1995, p. 241), according to which
an equilibrium is an ESS, if, from any point in its neighbourhood, at least one
player would get a higher payoff if it switches back to its equilibrium strategy.
(HL,H) would be an ESS if the signal were present, but not if the signal were
absent, because then the equilibriumcould be invadedbyL‑respondermutants,
who would effectively be undetected if the signal were absent and they would
therefore still get H offers. In contrast, (LL,L) – the UG’s SPNE – would not be
an ESS if the signal were present, because HL‑proposers could then invade, but
it would be an ESS if the signal were absent, as in the standard ultimatum game
without reputations.

Clearly, it is important to take information into account when analysing sta‑
bility. We will therefore need to calculate 𝑦𝐿((1, 1)), the probability that a pro‑
poser matched with an L‑responder will receive the signal indicating that the
responder has accepted a low offer.

4.4.1 The case where 𝑧 = 1
Since there are no signal sets with more than one signal in this example, it
seems we should be able to simplify by assuming that the proposer only sam‑
ples a single past interaction of the responder, so the ϐirst case to be consid‑
ered is where 𝑧 = 1. This collapses equations (4.14) and (4.12) to simply
𝑦𝐿({(1, 1)}) = 𝑦1𝐿((1, 1)). Call this value 𝑦∗ for convenience. It is the probabil‑
ity with which a proposer will know about a past interaction of the responder
in which the responder accepted a low offer (i.e. a negative reputation), for a
responder whose strategy is to accept low offers. Since there are just two pos‑
sible signal sets, the empty signal set’s probability is just the probability of not
getting the signal, 𝑦𝐿({}) = 1 − 𝑦∗. Using equation (4.3), we then see that,

𝑦∗ = 𝛼 ൣ𝑥𝑃𝐻𝐿((1 − 𝑦∗)0 + 𝑦∗1) + 𝑥𝑃𝐿𝐿((1 − 𝑦∗)1 + 𝑦∗1)൧ (4.15)
= 𝛼 ൣ𝑥𝑃𝐻𝐿𝑦∗ + 𝑥𝑃𝐿𝐿൧ ,
= 𝛼 ൣ𝑥𝑃𝐻𝐿𝑦∗ + (1 − 𝑥𝑃𝐻𝐿)൧ ,

therefore,

𝑦∗ = 𝛼(1 − 𝑥𝑃𝐻𝐿)
1 − 𝛼𝑥𝑃𝐻𝐿

. (4.16)

The ϐirst line (4.15) shows that outcome of a low offer being accepted by the
L‑responder can result from three distinct possibilities: A HL‑proposer seeing
the signal (thus making a low offer), a LL‑proposer not seeing the signal and a
LL‑proposer seeing the signal. If an interaction with this outcome is sampled
by a proposer, the proposer will see the signal with probability 𝛼.

Equation (4.16) indicates that if there are only LL‑proposers, i.e. if 𝑥𝑃𝐻𝐿 =
0, every interaction will result in a low offer getting accepted and 𝑦∗’s value
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becomes 𝛼. Furthermore, 𝑦∗ approaches zero as 𝛼 approaches zero and ap‑
proaches one as 𝛼 approaches one, except when 𝑥𝑃𝐻𝐿 = 1, in which case 𝑦∗ = 0
for any 𝛼 < 1. This indicates it is impossible to receive the signal if 𝑥𝑃𝐻𝐿 = 1
and 𝛼 < 1.

But there is a special case: when 𝛼 = 1 and 𝑥𝑃𝐻𝐿 = 1, the expression in
(4.16) is undeϐined. The problem is division by zero in the last step. If we back‑
track and take 𝑥𝑃𝐻𝐿 = 1, this gives 𝑦∗ = 𝛼𝑦∗, indicating that 𝑦∗ can take any
value if 𝛼 = 1. This means that, given any value 𝑦∗, the information generated
by interactions in which proposers see the signal with that probability is ex‑
actly 𝑦∗ once again. We get out exactly what information we put in. There is
some intuitive sense to this: if the fraction of L‑responders arriving at interac‑
tions with the signal is 𝑦∗, then HL‑proposers will make low offers a fraction 𝑦∗
of the time exactly, thus leading to the signal being observed 𝛼𝑦∗ = 𝑦∗ times
per interaction on average if 𝛼 = 1. Nevertheless, this demonstrates that the
framework can in some cases have indeterminate outcomes, which is generally
problematic. I discuss this issue and suggested solutions below. If 𝛼 < 1, the
information is attenuated and the only possible solution is 𝑦∗ = 0, thus inde‑
terminacy is avoided, but this is speciϐic to the case where 𝑧 = 1 (see below for
𝑧 > 1).

For now, assume 0 < 𝛼 < 1 and use (4.16)with (4.14) to calculate expected
payoffs for both players when a HL‑proposer interacts with an L‑responder,

𝜋𝑃(HL, L) = 𝛼(1 − 𝑥𝑃𝐻𝐿)
1 − 𝛼𝑥𝑃𝐻𝐿

3 + ቆ1 − 𝛼(1 − 𝑥𝑃𝐻𝐿)
1 − 𝛼𝑥𝑃𝐻𝐿

ቇ2

= 2 + 𝛼 − 3𝛼𝑥𝑃𝐻𝐿
1 − 𝛼𝑥𝑃𝐻𝐿

, (4.17)

and,

𝜋𝑅(HL, L) = 𝛼(1 − 𝑥𝑃𝐻𝐿)
1 − 𝛼𝑥𝑃𝐻𝐿

1 + ቆ1 − 𝛼(1 − 𝑥𝑃𝐻𝐿)
1 − 𝛼𝑥𝑃𝐻𝐿

ቇ2

= 2 − 𝛼 − 𝛼𝑥𝑃𝐻𝐿
1 − 𝛼𝑥𝑃𝐻𝐿

. (4.18)

Table 4.4.3 incorporates these expressions and can be regarded as reϐlect‑
ing a game with the endogenous information aspect fully solved. Remember
that 𝑥𝑃𝐻𝐿 reϐlects the frequency of the HL strategy in the population and should
not be confusedwith the proposer’s strategy in a particular interaction. The ex‑
pected payoffs to both HL‑proposers and L‑responders (but not LL‑proposers
orH‑responders) dependnot only on the strategy of their opponents in a partic‑
ular game but also on the population frequency of HL‑proposers, which means
this game features own‑population effects for proposers and nonlinear state
dependence (Friedman, 1998, p. 22–23).
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Responder
H L

Proposer HL 2, 2 2 + 𝛼 − 3𝛼𝑥𝑃𝐻𝐿
1 − 𝛼𝑥𝑃𝐻𝐿

, 2 − 𝛼 − 𝛼𝑥𝑃𝐻𝐿
1 − 𝛼𝑥𝑃𝐻𝐿

LL 0, 0 3, 1

Table 4.4.3: Strategic‑form representation of an ultimatumminigame (solved)

0.0 0.2 0.4 0.6 0.8 1.0

xPHL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
xp

ec
te

d
p

ay
off

s

πP (HL,L)

πR(HL,L)

πRL
y∗

Figure 4.4.1: Expected payoffs for HL‑Proposers and L‑Responders with en‑
dogenous information (𝛼 = 0.6)

Figure 4.4.1 shows expected payoffs for HL‑proposers and L‑responders as
𝑥𝑃𝐻𝐿 is varied from zero to one with 𝛼 = 0.6. A higher value for 𝛼 shows the
nonlinearity of the curves more clearly. The expected payoff for a HL‑proposer
proposing to an L‑responder decreases from 2.6 to 2. An L‑responder (who
never rejects any offers) gets an expected payoff of 4 minus the HL‑propos‑
er’s expected payoff, which increases from 1.4 to 2. These effects are caused
by the decrease in the probability with which the proposer receives the signal
(and thus knows that the responder accepts L and thus reduces the offer ac‑
cordingly), which decreases from 𝛼 to zero. On the left‑hand‑side of the graph,
HL‑proposers are beneϐiting from the abundance of LL‑proposers in the popu‑



CHAPTER 4. GOOD AND BAD REPUTATIONS 103

lation who make L offers to the L‑responders, hence there is a relatively high
probability that the signal will be generated. But on the right‑hand‑side infor‑
mation is relatively scarce soHL‑proposers endupmakingmoreHoffers, which
is to their detriment and to the beneϐit of the L‑responders. Also shown on the
graph is 𝜋𝑅𝐿 , the average payoff to L‑responders against a random member of
the proposer population, which is relatively low on the left‑hand‑side because
of the high frequency of LL‑proposers they interact with, who always offers L,
not just a fraction 𝛼 of the time as the HL‑proposers do.

The analysis helps to settle the question of stability for 𝛼 < 1 and 𝑧 = 1. On
the left of the graph, where 𝑥𝑃𝐻𝐿 = 0, the expected payoff of a HL‑proposer, 𝛼3+
(1−𝛼)2 = 2+𝛼 = 2.6 is strictly less than the payoff of a LL‑proposer, 3, against
a population of all L‑responders, which makes (LL,L) an ESS. On the right, all
responders get an expected payoff of 2, as there is no information to distinguish
them, soHL‑proposers offerH to bothH‑ andL‑responders. Therefore (HL,H) is
not anESS, contrary toNowaket al. (2000)’s ϐinding that bothhigh and lowoffer
equilibria are stable in their minigame. The difference is precisely due to their
minigame analysis not taking into account endogenous information. However,
is could be argued that ESS stability gives a limited (static) view of stability,
and I will show below (section 4.5.3) that there can indeed be high‑offer stable
evolutionary equilibria if minor modiϐications are made.

4.4.2 The case where 𝑧 > 1 and the general problem of
information indeterminacy

It would seem from the previous analysis that the problem of information in‑
determinacy can be eliminated by setting 𝛼 < 1, but unfortunately this is not
generally the case. If proposers can gain information from more than one past
interaction of a responder, i.e. if the sample size 𝑧 > 1, a small probability 𝛼 of
observing a signal in a single interaction can easily turn into a large probability
of the responder’s behaviour being detected by a proposer.

Instead of analysing the fullminigame again, the focus here is speciϐically on
the case where 𝑥𝑃𝐻𝐿 = 1 and an interaction takes place between a HL‑proposer
and an L‑responder. Using (4.13) and (4.3), we can calculate the probability of
the (1, 1) signal being received as,

𝑦∗ = 1 − ൫1 − 𝛼 ൫𝑥𝑃𝐻𝐿𝑦∗ + (1 − 𝑥𝑃𝐻𝐿)൯൯
𝑧 .

= 1 − (1 − 𝛼𝑦∗)𝑧 (4.19)

which is still an implicit function. Figure 4.4.2 shows plots of “output” (LHS)
values of 𝑦∗ against “input” (RHS) values for 𝑦∗ for different𝛼 and 𝑧 parameters.
A solution of (4.19) is indicated by the curve crossing the dotted 45∘ line. Recall
that these are values for 𝑦∗ that induce distributions of action proϐiles, which,
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if sampled according to the speciϐied sampling procedure, result in the same
information again.

From the bottom, the (𝛼 = 0.3, 𝑧 = 1) curve is linear and produces only one
solution at 𝑦∗ = 0 – the solution I worked with above to claim that (HL,H) was
not an ESS. If 𝛼 = 1 and 𝑧 = 1, the linear curve would lie exactly on top of the
45∘ line, explaining the complete indeterminacy found in that case. The next
curve, (𝛼 = 0.4, 𝑧 = 2), is nonlinear, but the sampling parameters are still too
weak for negative reputations to survive – the only solution is again at 𝑦∗ = 0
and the implications for stability of the equilibria would be similar to the above.
The three other curves all cross the 45∘ line twice, at 𝑦∗ = 0 and again at some
positive value. This can either be achieved by increasing 𝛼 or by increasing 𝑧.
Increasing the value of 𝑧 increases nonlinearity but does not alter the number
of crossing points within the boundaries considered.
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Figure 4.4.2: Information function solutions (𝑥𝑃𝐻𝐿 = 1)

The curves that cross the 45∘ line twice indicates that there are multiple
solutions for those parameter values, and we now see that setting 𝛼 < 1 does
not always prevent this. This is because setting 𝑧 > 1 boosts the probability
with which a signal is observed in a sample beyond the frequency with which it
can be observed in a single interaction, so the information does not attenuate
to zero as above with 𝛼 < 1 and 𝑧 = 1. Thus we see multiple solutions are
common rather than just a special case due to extreme parameter values.
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This indeterminacy should not be considered anonsensical result. Consider
two L‑responders: one with an existing negative reputation and one without,
entering an environment ϐilled with HL‑proposers. Under the right conditions,
the responderwith the negative reputation gets offered low amounts, which he
accepts, thus his negative reputation is reproduced, while the responder about
whom nothing is known gets offered only high amounts, thus she is never ob‑
served to accept a low offer and her reputation remains intact.

Yet indeterminacy introduces three problems in analysing the UG. Firstly,
the information framework only accommodates one signal set probability dis‑
tribution for each responder type, effectively making it a representative agent
model. There cannot be two agents of the same type, one with a clean reputa‑
tion and one without. It is not hard to imagine that in some situations a per‑
manently clean reputation may be a matter of individual luck, but the use of
expected values in the framework removes the possibility of such stochastic ef‑
fects. This links to the second problem, namely that a particular result, even
a relatively stable one, may not be robust against large unmodelled stochastic
effects if there are multiple endogenous information equilibria. Perhaps a re‑
sponder with a negative reputation can be lucky enough to avoid low offers for
long enough that the negative reputation is forgotten.

Finally, a problem of a more practical nature is that, if there are multiple
endogenous information equilibria, the prior values one uses in (4.3) will de‑
termine the result, and it is hard to think of a strong general principle by which
to choose prior values. Conceptually the information is supposed to come from
the interactions between proposers and responders at a point in evolutionary
time. Should everyone start with a clean slate? This is debatable. It can be even
less clearwhenweconsider that reputations inmore complicated scenarios can
consist of bundles of signals of various kinds.

Fortunately, there is a reasonable way to avoid the problem altogether. If
one is concerned about realistic unmodelled stochastic effects causing a respon‑
der to permanently lose a negative reputation, then it could be argued that it
alsomakes sense to be concerned about the realistic possibility of the opposite,
i.e. an L‑responderwith a clean reputation having the bad luck to receive a rare
low offer, thus gaining a permanent negative reputation. We must therefore
ensure that such possibilities exist. If a signal type is included in the analysis,
there should be a way for this signal to become part of an agent’s reputation
even if it is not there initially.

In this minigame, this means it must be ensured that there is always some
possibility of lowoffers being received. This is easily achievedby adding a small
mutation rate to the evolutionary model, which I do in the next section. This
effectively ensures that 𝑥𝑃𝐻𝐿 < 1 at all times, i.e. there is always at least a pos‑
itive (though possibly very small) frequency of LL‑proposers in the environ‑
ment, who can act as the source of occasional low offers to responders with
clean reputations. It is interesting to note that the only other model with en‑
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dogenous information, Nowak et al. (2000)’s second (agent‑based simulation)
model, includes a small exogenous probability of H‑proposers making low of‑
fers – possibly this was also added partly to “seed” negative reputations among
L‑responders to avoid zero‑information outcomes.32
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Figure 4.4.3: Information function solutions (𝑥𝑃𝐻𝐿 = 0.9)

Figure 4.4.3 shows the effect of the addition of LL‑proposers, whose fre‑
quency is set to 0.1 for illustration. A clean reputational slate offers no defence
against LL‑proposers, who ignore reputations and make low offers indiscrimi‑
nately. This can be seen clearly on the left‑hand side of the graph, where posi‑
tive probabilities of observing the signal being emitted result from interactions
inwhich no signals have been received by proposers. Once L‑responders have a
small positive probability of being detected, the probability increases even fur‑
ther because now interactions with both types of proposers can result in the
signal being emitted.

For all of sampling parameter conϐigurations, there is now exactly one value
of 𝑦∗ that solves the information equation, so the problems associated with in‑
determinacy are gone. There is always a positive probability of observing a
negative reputation for all L‑responders. As I will show in section 4.5.3, the

32Akdeniz and Van Veelen (2023) also included mutation in their model though the lack of
endogenous information in their model suggests the purpose of this could not have been to
avoid zero‑information outcomes.
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high‑offer equilibrium in a model with a small rate of mutation can be asymp‑
totically stable.

Dowe not lose something importantwhenwe discard the 𝑦∗ = 0 solutions?
I think that it is important to know about their theoretical existence, but they
need not be dwelt upon. The addition of mutation is arguably a step towards
greater realism and is required in any case to ϐlush out equilibria that are not
subgame perfect (explained further in the next section).

Furthermore, the 𝑦∗ = 0 solutions are clearly unstable in the information
framework in cases where another solution also exists – notice in ϐigure 4.4.2
that the slopes of the relevant curves at 0 are always greater than 45∘, indicat‑
ing that in the positive neighbourhood around 0, the equation will emit larger
values than we put in. The positive‑information solutions, on the other hand,
are stable: the equation crosses the 45∘ line from above, demonstrating that to
the left of the solution 𝑦∗ is boosted and to the right it is attenuated. This brief
stability analysis also suggests that a straightforward iterative numerical pro‑
cedure can be to used solve the equation; this is implemented in section 4.5.2.

In summary, this section has illustrated how the information framework
can be explicitly solved for very simple cases, and howendogenous information
affects a simpleminigame, including important effects on stability of equilibria.
It also pointed out how information indeterminacy can arise in certain situa‑
tions, and suggested a reasonable solution to the problem, namely to ensure,
using mutation or some other device, that there are always some positive fre‑
quencies of proposer types that can cause all signals included in an analysis to
occur with strictly positive probability regardless of prior reputations.

4.5 Deterministic simulation results
In this section the aforegoing framework is used to generate a series of simple
models that are analysed using computer simulations of deterministic aggre‑
gate dynamics. The ϐirst models have only negative reputations, while those
that follow have only positive reputations and ϐinally both negative and posi‑
tive are combined in the same model. The last section brieϐly describes exam‑
ples of more sophisticated strategies that can evolve to take advantage of more
complex information structures in larger models.

Most of the models are minigames with only two possible offer amounts,
and restricted strategy sets, which conveniently allows two‑dimensional graph‑
ical analysis, though models with fewer restrictions are also described in sec‑
tion 4.5.3 and again in section 4.5.6, which gives an indication of the relevance
of excluded (generally weakly dominated) strategies. The section beginswith a
mathematical description of the deterministic dynamics and implementation.
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4.5.1 Deterministic evolutionary dynamics
Section 4.3 explains how expected payoffs can be calculated, given strategy fre‑
quency distributions for the populations of proposers and responders. These
expected payoffs reϐlect an endogenous information equilibrium at each point
in evolutionary time, in which current strategy frequencies induce a distribu‑
tion of action proϐiles and a distribution of signal sets for each responder type
that are mutually consistent. In this section, the framework is turned into an
evolutionarymodel byadding standard continuous replicatordynamics.33 These
equations determine how strategy frequencies evolve over time in response to
expected payoffs. By working with expected payoffs, rather than actual payoffs
in random encounters, we are effectively assuming that the population size is
inϐinite so all stochastic payoff effects cancel out (see Sandholm, 2010, p. 119,
Friedman, 1998, p. 20). The populations of proposers and responders evolve
separately:

𝑑𝑥𝑃𝑖 /𝑑𝑡 = 𝑥𝑃𝑖 (𝜋𝑃𝑖 − 𝜋𝑃)
𝑑𝑥𝑅𝑗 /𝑑𝑡 = 𝑥𝑅𝑗 (𝜋𝑅𝑗 − 𝜋𝑅) (4.20)

where 𝑥𝑃𝑖 is the current fraction of the proposer population adopting strategy
𝑠𝑃𝑖 , 𝜋𝑃𝑖 = ∑𝑗 𝑥𝑅𝑗 𝜋𝑃(𝑠𝑃𝑖 , 𝑠𝑅𝑗 ) is the expected payoff to 𝑠𝑃𝑖 against a randomly se‑
lected responder, using (4.14) to determine the expected payoff for a speciϐic
strategy proϐile, and𝜋𝑃 = ∑𝑖 𝑥𝑃𝑖 𝜋𝑃𝑖 is the current average expected payoff in the
proposer population (and similar for responders). It can be seen that strategies
that earn an expectedpayoff higher than the averagepayoffwill tend to increase
their share in the population and strategies earning expected payoffs below the
average will be adopted by a decreasing fraction of the population.

In addition to selection, I also addmutation to the dynamics. At a low rate, 𝛿,
strategies change into a strategy selected at random fromall possible strategies.
The interpretation is that agents innovate or make mistakes in learning. Muta‑
tion ensures that there is always a small positive frequency in each population
of each possible strategy.34

33While the replicator dynamics has biological origins (Taylor and Jonker, 1978), reϐlecting
the dynamical effects of differential reproduction rates of different phenotypes, the model can
also be interpreted as an imitative learning model (Weibull, 1995, p. 155, Björnerstedt and
Weibull, 1995, p. 163, Gale et al., 1995, p. 85, Sandholm, 2010, p. 154, Hoϐbauer and Schlag,
2000, p. 529).

34The replicator dynamics is said to be invariant on any face or in the interior of the simplex
representing the state space, where a face corresponds to situations where some strategies
have zero probability and the interior situations where all strategies have positive probability
(see Hoϐbauer and Sigmund, 2003, p. 482). Therefore, a strategy that is present in the pop‑
ulation can never be entirely eliminated through selection, though its frequency can certainly
become small enough to be insigniϐicant for all other calculations. On the other hand, a strategy
that is absent from a population can never be introduced through selection alone either.
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This addresses the indeterminacy problem discussed in the previous sec‑
tion, provided that the set of possible strategies are chosen to include strate‑
gies that can lead to all possible signals being emitted regardless of prior rep‑
utations. In addition, mutation can ϐlush out strategies that make irrational
choices on off‑equilibrium paths, e.g. responder strategies that reject low of‑
fers should not survive merely because no proposers are making low offers. A
low frequency of various strategies due to mutation provides a minimal incen‑
tive tomake rational choices against all possible opponent strategies. Mutation
is implemented at a low rate, so it will not generally interferewith the relatively
strong force of selection, but it can sometimes affect the system’s dynamics in
signiϐicant ways (Gale et al., 1995). In one of the models, discussed in section
4.5.4, mutation is shown to add subtle bias to the dynamics that can stabilize
an interior equilibrium.

The replicator dynamicswithmutation added result in the followingdynam‑
ics:

𝑑𝑥𝑃𝑖 /𝑑𝑡 = 𝑥𝑃𝑖 (𝜋𝑃𝑖 − 𝜋𝑃) + 𝛿 ൬ 1
|𝑆𝑃| − 𝑥𝑃𝑖 ൰

𝑑𝑥𝑅𝑗 /𝑑𝑡 = 𝑥𝑅𝑗 (𝜋𝑅𝑗 − 𝜋𝑅) + 𝛿 ൬ 1
|𝑆𝑅| − 𝑥𝑅𝑖 ൰ (4.21)

4.5.2 Implementation
Toobtain simulation results fromthese continuousdynamics, they arediscretiz‑
ed as follows:

𝑥𝑃𝑖 (𝑡 + 𝜏) − 𝑥𝑃𝑖 (𝑡) = 𝜏 𝑥𝑃𝑖 (𝜋𝑃𝑖 − 𝜋𝑃) + 𝛿 ൬ 1
|𝑆𝑃| − 𝑥𝑃𝑖 ൰൨

𝑥𝑅𝑗 (𝑡 + 𝜏) − 𝑥𝑅𝑗 (𝑡) = 𝜏 𝑥𝑅𝑗 (𝜋𝑅𝑗 − 𝜋𝑅) + 𝛿 ൬ 1
|𝑆𝑅| − 𝑥𝑅𝑖 ൰൨ , (4.22)

wheremy implementation uses 𝜏 = 1
20 , which gives accurate results.35 At every

𝜏‑step, signal set probabilities are needed to be able to calculate expected util‑
ities (see equation 4.14). According to equations (4.3) and (4.12) these proba‑
bilities result from the same distribution of action proϐiles that are induced by
those probabilities. In practice, the pattern of interactions are determined to‑
gether with the signal set probabilities, using the previous time step’s probabil‑
ities as prior values. The posterior probabilities that result from the pattern of

35As a check, I regenerated ϐigure 4.5.1c with 𝜏 = 1
100 , and the results were practically in‑

distinguishable. This does not mean that small errors from the ideal (𝜏 → 0) do not occur,
but they do not appear to be signiϐicant, particularly in the vicinity of asymptotically stable
equilibria where movement is very slow, so the approximation is more accurate. Away from
such equilibria, on faster‑moving trajectories with directional changes, errors could in theory
be more serious, but I still found only very minor changes in such trajectories (e.g. the simula‑
tion in ϐigure 4.5.3d). On the other hand, the computational time savings from a slightly higher
value for 𝜏 were substantial.
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interactions are then compared with the prior values to determine the degree
of error. If the error is signiϐicant, the procedure is repeated, this time using
the previous attempt’s calculated probabilities as priors. This procedure loops
until an acceptably small error is obtained, indicating a solution for the endoge‑
nous information equilibriumhas been found. I consider a solution to bewhere
the absolute value of the error for all probabilities are less than 0.000000001.

Pseudocode is provided in Algorithm 1.36 Since the strategy frequencies
themselves change in relatively small steps to simulate continuous movement,
the prior signal set probabilities from the previous 𝜏‑step are typically quite
close to the required solution so the algorithm can ϐind them easily enough.37

4.5.3 Model 1: Negative reputations
The ϐirst model considered is the negative reputation minigame model based
on Nowak et al. (2000)’s ϐirst model and described in detail in section 4.4. I
summarize the model again here:

$ = 4
𝐴𝑃 = {2, 1}
𝑀 = {(1, 1)}
𝑄 = {{}, {(1, 1)}}
𝑆𝑃 = {𝑠𝑃1 , 𝑠𝑃2 , 𝑠𝑃3 , 𝑠𝑃4 }

where

𝑠𝑃1 = ൝2, if 𝑞 = {}
2, if 𝑞 = {(1, 1)} (‘HH’) 𝑠𝑃2 = ൝1, if 𝑞 = {}

1, if 𝑞 = {(1, 1)} (‘LL’)

𝑠𝑃3 = ൝2, if 𝑞 = {}
1, if 𝑞 = {(1, 1)} (‘HL’) 𝑠𝑃4 = ൝1, if 𝑞 = {}

2, if 𝑞 = {(1, 1)} (‘LH’)

Recall that 𝑆𝑃1 and 𝑆𝑃4 are weakly dominated (see table 4.4.1). It is known that
the presence of strategies that are themselves suboptimal can sometimes have
signiϐicant effects on the relative success of other strategies (Axelrod, 1984;
Skyrms, 2014), so I ϐirst report simulation results with all four proposer strate‑
gies present. Our point of departure is to investigate whether the main conclu‑
sions of Nowak et al. (2000) hold in the more general model. Their minigame

36The full programwas implemented using the Python programming language. Graphswere
produced using the matplotlib library.

37Occasionally, however, the algorithm can overshoot the target while searching for an in‑
formation solution. When this is detected (i.e. errors increasing instead of decreasing), the
program interpolates between prior and calculated posterior probabilities with progressively
decreasing weights given to the posterior, effectively reducing the search step size (not shown
in pseudocode).
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Algorithm 1 Simulating one 𝜏‑step
1: function INTERACTION_RESULTS_R(𝑗, 𝑥𝑃, 𝑦𝑗)
2: payoff ← 0
3: posterior_y1 ← vector of zeroes
4: for all i do
5: for all signal sets 𝑞 do
6: weight ← 𝑥𝑃𝑖 𝑦𝑗(𝑞)
7: outcome ← (𝑠𝑃𝑖 (𝑞), 𝑠𝑅𝑗 (𝑠𝑃𝑖 (𝑞))
8: increase payoff by weight × 𝜋𝑅(outcome)
9: increase posterior_y1[outcome] by weight × 𝛼

10: calculateposterior_y for all signal sets from𝑦1 given sample size 𝑧 (equa‑
tion 4.13)

11: return payoff, posterior_y

12: function INTERACTION_RESULTS_P(𝑖, 𝑥𝑅 , 𝑦)
13: payoff ← 0
14: for all j do
15: for all signal sets 𝑞 do
16: weight ← 𝑥𝑅𝑗 𝑦𝑗(𝑞)
17: outcome ← (𝑠𝑃𝑖 (𝑞), 𝑠𝑅𝑗 (𝑠𝑃𝑖 (𝑞))
18: increase payoff by weight × 𝜋𝑃(outcome)
19: return payoff

20: procedure RUN_FOR_1_STEP
21: repeat
22: for all j do
23: 𝜋𝑅𝑗 , 𝑦′𝑗 ← INTERACTION_RESULTS_R(𝑗, 𝑥𝑃, 𝑦𝑗)
24: info_err← max𝑗,𝑞(|𝑦′𝑗(𝑞) − 𝑦𝑗(𝑞)|)
25: 𝑦 ← 𝑦′
26: until info_err < 0.000000001
27: for all i do
28: 𝜋𝑃𝑖 ← INTERACTION_RESULTS_P(𝑖, 𝑥𝑅 , 𝑦)
29: for all i do
30: 𝑥𝑃𝑖 ← 𝑥𝑃𝑖 + 𝜏 𝑥𝑃𝑖 (𝜋𝑃𝑖 − 𝜋𝑃) + 𝛿 ൬ 1

|𝑆𝑃| − 𝑥𝑃𝑖 ൰൨
31: for all j do
32: 𝑥𝑅𝑗 ← 𝑥𝑅𝑗 + 𝜏 𝑥𝑅𝑗 (𝜋𝑅𝑗 − 𝜋𝑅) + 𝛿 ൬ 1

|𝑆𝑅| − 𝑥𝑅𝑖 ൰൨
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model includes only two proposer strategies, but they assume that when an H‑
proposer is pairedwith an L‑responder, the offer is reduced by a ϐixed amount –
interpreted as reϐlecting a proposer’s average response given imperfect knowl‑
edge of the responder’s strategy. This means their L‑proposer is similar to my
LL‑proposer and their H‑proposer is similar to my HL‑proposer. They report
that their model produces a bistable dynamic system: both H‑ and L‑offer equi‑
libria are stable. But their model does not feature endogenous information or
mutation, so it would be interesting to establish whether a high‑offer equilib‑
rium, where information should be scarce, could be maintained under endoge‑
nous information, with the presence of a low rate ofmutation. The second ques‑
tion is whether the endogenous informationmodel also produces a bistable dy‑
namic system, or alternatively whether there are reputation mechanisms that
can emerge ex nihilo, in other wordswhether a high‑offer equilibrium based on
reputations can evolve from initial conditions in which offers are low and there
are no reputations.

For the ϐirst results, I set the mutation rate to a fairly low 0.01. I ran simula‑
tions stepping through parameter values for𝛼 from 0 to 1 and 𝑧 from 1 to 9. For
each information parameter value pair, I used three initial conditions, the ϐirst
with only LL‑proposers and L‑responders (labelled ‘L’ in table 4.5.1 below), the
second with a uniform distribution over all strategies for each population (‘U’)
and the third with only HL‑proposers and H‑responders (‘H’). This allows both
high‑offer‑equilibria and low‑offer‑equilibria to be found for all combinations
of parameter values. Each simulation was allowed to run until the state stabi‑
lized.38 The results are shown in ϐigure 4.5.1a. Equilibria were of two types,
high‑offer and low‑offer. H offers were made in at least 98.9% of interactions
in each H‑equilibrium, and L offers were made in at least 97.9% of interactions
in each L‑equilibrium.39 If all three sets of initial conditions lead to the same
equilibrium for given parameter values, “L” or “H” is indicated on the graph,
while if different initial conditions resulted in different equilibria, “+” is indi‑
cated for a bistable dynamic system. As can be seen, if information is scarce,
only the low‑offer equilibrium (close to the UG’s SPNE) can be stabilized. Even
moderate information parameter values such as (𝛼 = 0.55, 𝑧 = 1) do not yield
high‑offer equilibria at all; the reasons are explored below. For higher param‑
eter values, both low‑offer and high‑offer stable equilibria exist (the system is
bistable), and for even higher parameters, only the high‑offer equilibria are sta‑
ble. The information parameters for which this occurs need to be very strong,
as is shown below.

The same series of simulationswere run again, this timewith a substantially
lower mutation rate, 𝛿 = 0.001; results are shown in ϐigure 4.5.1b. Results are

38This is interpreted to mean that in two successive time periods (separated by 𝜏), the maxi‑
mum change in any state variable (i.e. strategy frequency) is less than 0.00000001.

39These calculations Take into account both strategy and information frequencies at the equi‑
libria.
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(c) Restricted 𝑆𝑃 , 𝛿 = 0.01
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Figure 4.5.1: Minigame equilibria with negative reputation
Key: L: low‑offer equilibrium only H: high‑offer equilibrium only +: bistable.
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quite similar except that the system is now bistable for a larger range of in‑
formation parameter values. Speciϐically, the low‑offer equilibrium is stable in
more settings with relatively strong information. This suggests that higher mu‑
tation rates tends to destabilize some low‑offer equilibria so that the systems
end up at high‑offer equilibria instead. On the other hand, mutation seems to
have a surprisingly small effect on the stability of high‑offer equilibria – in other
words, they seem to depend more on information parameters than on the mu‑
tation rate.

Conditions Proposers Responders

No. 𝑧 𝛼 Initial LL LH HL HH L H 𝑦𝐿∗ Reject

1 1 0 Any 0.497 0.497 0.003 0.003 0.995 0.005 0.000 0.005
2 1 0.4 Any 0.987 0.006 0.004 0.003 0.995 0.005 0.397 0.005
3 4 0.1 Any 0.986 0.007 0.004 0.003 0.995 0.005 0.342 0.005
4 4 0.15 L or U 0.987 0.005 0.005 0.003 0.995 0.005 0.475 0.005
5 4 0.15 H 0.007 0.007 0.775 0.211 0.554 0.446 0.016 0.006
6 4 0.2 L or U 0.987 0.004 0.006 0.003 0.995 0.005 0.587 0.005
7 4 0.2 H 0.004 0.004 0.725 0.268 0.438 0.562 0.013 0.004
8 4 0.4 L 0.974 0.003 0.020 0.003 0.995 0.005 0.868 0.005
9 4 0.4 U or H 0.001 0.001 0.747 0.250 0.016 0.984 0.407 0.003

10 4 0.6 L 0.831 0.003 0.164 0.003 0.993 0.007 0.973 0.006
11 4 0.6 U or H 0.001 0.001 0.748 0.250 0.008 0.992 0.858 0.002
12 4 0.8 Any 0.001 0.001 0.748 0.250 0.007 0.993 0.969 0.002

Table 4.5.1: Minigame 1 (Negative reputations) characteristics of selected equi‑
libria (𝛿 = 0.01)

Some characteristics of selected equilibria are given in table 4.5.1. Each line
represents an equilibrium, which can in some cases be reached from any initial
distribution (“Any”), but in cases of bistable systems, only from certain initial
distributions (‘H’, ‘U’, or ‘L’, as described above). The equilibrium frequencies of
each strategy are given, as well as the probability with which a responder can
observe the (1, 1) signalwhen interactingwith anL‑responder, i.e. the probabil‑
ity that the proposer knows that the responder will accept an L offer (indicated
in the table as 𝑦∗𝐿). The last column shows the rejection rate, which is quite low
in all cases – strategies that result in substantial rejection are rapidly selected
against, though the presence ofmutation ensures that all strategies are present
at minimal frequencies at least.
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Only in the ϐirst case (no. 1) is there any signiϐicant presenceof the irrational
LH proposer strategy. In this case, the probability of the signal being observed
is zero so LH is equivalent to LL, while in all cases where the signal can be ob‑
served, the LH strategy frequency is driven down close to zero rapidly. When
information is present, but weak (nos. 2 and 3), as indicated previously, there
is only one equilibriumwith low offers, so only LL‑proposers and L‑responders
have high frequencies. If the information parameters are strengthened, the sys‑
tem becomes bistable, so stable low‑offer equilibria can be reached from some
but not all initial distributions (nos. 4, 6, 8 and 10). Even when the signal prob‑
ability is at 0.973 (no. 10), which is almost a certainty, this is still not enough
to get out of the low‑offer equilibrium. The reason for this is that if most offers
are low, switching to demanding H will immediately trigger rejections. Only
when there is a substantial enough frequency of HL‑proposers is it possible to
move out of an L‑offer equilibrium, but HL‑proposers are at a disadvantage to
LL‑proposers when the vast majority of responders accept low offers, the only
exceptionbeing if they canobserve the L‑responders’ negative reputationswith
a probability approaching certainty.

On the other hand, it takes extremely little information to stabilize a high‑
offer equilibrium. In the seventh case, the probability of the signal being ob‑
served is a mere 0.013, yet the high‑offer equilibrium is stable. This shows en‑
dogenous information at work: despite fairly robust information parameters
(𝑧 = 4, 𝛼 = 0.2), the signal is observed only very infrequently because few in‑
teractions take place where L‑responders receive low offers when the system
is at a high‑offer equilibrium.40 The small probability of the signal being re‑
ceived is barely enough to distinguish HL‑ from HH‑proposers, but there is a
slight payoff advantage to HL‑proposers (2.0059 vs 2.0000) so their frequency
remains just high enough for H‑responders to get very slightly higher expected
payoffs than L‑responders (1.9856 vs 1.9832). The small payoff difference al‑
lows L‑responders’ frequency to become substantial, which is a result of mu‑
tation, that tends to pull the responder distribution towards uniformity when
thepayoff gradient is ϐlat. A high‑offer equilibriumcanbemaintainedwith even
weaker information parameters (no. 5) where L‑responders even have a slight
payoff advantage over H‑responders, but the difference is small enough that
mutation canmaintain the frequency of H‑responders at a level high enough to
keep the proposers’ payoff advantage with high offers.41

40There are almost no LL‑proposers (who would generate the signal often when paired with
an L‑responder) and a substantial share of HH‑proposers whose interactions never generate
the signal. The signal can be generated by HL‑proposers interacting with L‑responders but
because information is so scarce these proposers rarely make low offers to them.

41This is a rare case of a high‑offer equilibriumbeingmaintainedby the force ofmutation. Fig‑
ure 4.5.1b indicates that the rate of mutation is not critical: the same thing happens at a much
lowermutation rate as well. This is similar to themechanism investigated by Gale et al. (1995).
In their model, the high‑offer equilibrium is maintained by boosting the rate of responder mu‑
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(b) 𝑧 = 4, 𝛼 = 0.2
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(c) 𝑧 = 4, 𝛼 = 0.5
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(d) 𝑧 = 4, 𝛼 = 0.8

Figure 4.5.2: Phase portraits for a minigame with negative reputations
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The presence of a signiϐicant frequency of the weakly dominated HH‑re‑
sponders in H‑equilibria, and the fact that interactions with these proposers
produce no information (i.e. accepted low offers), suggest their presence may
have a negative impact on stability of high‑offer equilibria. I ran all of the afore‑
going simulations again with only two possible proposer strategies included in
𝑆𝑃, LL and HL. The results, shown in ϐigures 4.5.1c and 4.5.1d indicate that the
impact is relatively unimportant: for a small number of parameter values the
dynamics now give only low‑offer equilibria (e.g. 𝑧 = 5, 𝛼 = 0.1, 𝛿 = 0.01),
where previously there were also high‑offer equilibria, but for most parameter
values the stable outcomes are the same.42

Since it appears that the weakly dominated strategies HH and LH are not
important, I remove them for the remainder of the analysis in this section. This
very usefully allows two‑dimensional phase portraits to be used to illustrate
trajectories of the dynamic systems for all areas of the state space. I also ϐix
𝛿 = 0.01. Trajectories are plotted for a number of selected parameter value
combinations to illustrate dynamics when there is only a low‑offer equilibrium
(ϐigure 4.5.2a), when the system is bistable (ϐigures 4.5.2b and4.5.2c) andwhen
there is only a high‑offer equilibrium (ϐigure 4.5.2d). In all cases, there is strong
selection towards high offerswhen 𝑥𝑅𝐻 is high, and strong selection towards low
responder demands when 𝑥𝑃𝐻𝐿 is low. Both effects aim to avoid high probabili‑
ties of rejections.

There is also strong selection pressure on proposers to make low offers
when 𝑥𝑅𝐻 is close to zero, except when information parameters are extremely
strong. In the lower‑left‑hand‑side corner of ϐigure 4.5.2d, the probability of
learning about an L‑responder’s acceptance of low offers is almost one, and es‑
cape from a low‑offer equilibrium is possible. Note that mutation will tend to
(slightly) push both 𝑋𝑃𝐻𝐿 and 𝑥𝑅𝐻 higher, thus aiding the eventual transition to a
situation where high offers are the norm.

On the other hand, the downwards selective pressure on responders when
𝑥𝑃𝐻𝐿 is close to one (seen in ϐigure 4.5.2a) is weak and can easily be reversed
if there is even a modest probability of proposers being able to ϐind out about
L‑responder’s acceptance of low offers, so upwards movements are observed
on the right‑hand side in all cases except the ϐirst. As indicated above, even
though the probability of the signal is quite small, it still requires fairly strong
selection parameters because information is inherently weak when there are
very few LL‑proposers.

To summarize, with the possibility of negative reputations, it will under
most circumstances be difϐicult to escape low‑offer equilibria, similar to the
tation relative to that of proposers, but here the mutation rates are equal for both populations;
the nudge required to reach the same outcome is instead provided by reputations.

42There are also isolated cases where low‑offer equilibria disappear when 𝑆𝑃 is restricted
(e.g. 𝑧 = 3, 𝛼 = 0.7, 𝛿 = 0.01). This could be due to mutation towards HH‑proposers making
H‑responders’ expected payoffs slightly higher.
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UG’s SPNE. On the other hand, it is also quite easy to stabilize a high‑offer equi‑
librium in many cases, as the force of selection on responders towards accept‑
ing lower offers is rather weak when most offers are high, and not much help
is required from the reputation mechanism, which is actually rather weak in
terms of delivering reliable information. Notmuch information is required, and
notmuch information is available, but occasional low offers being accepted and
knowledge thereof serve as enough of a disincentive effect to responders to
maintain their high demands.

These results thereforebroadly concurwithNowaket al. (2000) in that both
high‑offer and low‑offer equilibria can be stable, though now accounting prop‑
erly for endogenous information. This suggests that evolution will sometimes
result in either outcome. But experimental results, even while there is diver‑
sity in outcomes, almost never exhibit the low‑offer SPNE result where the pro‑
poser takes practically all of the surplus and the responder accepts (Henrich
et al., 2005), suggesting that other models also need to be considered.

4.5.4 Model 2: Positive reputations
While the negative reputation mechanism considered above is a natural and
intuitive way to account for information that proposers could have about past
behaviour of responders, it is not the only possible way to think about repu‑
tations. If only negative reputations are modelled, a proposer who observes a
responder rejecting a low offer would not treat that responder any differently,
though there is clearly valuable information in such an observation. A reason‑
able proposer should conclude that it is in his best interests to make higher
offers to such a responder, to avoid similar rejection, thus such reputations
are positive. Allowing proposers to be sensitive to positive reputations, as will
be shown, leads to totally different results to those of the negative reputation
model above.

The second model I consider therefore allows for positive reputations by
including the signal sets with the signal (1, 0) in the set of possible signal sets
𝑄:

$ = 4
𝐴𝑃 = {2, 1}
𝑀 = {(1, 0)}
𝑄 = {{}, {(1, 0)}}
𝑆𝑃 = {𝑠𝑃1 , 𝑠𝑃2 }

where

𝑠𝑃1 = ൝1, if 𝑞 = {}
2, if 𝑞 = {(1, 0)} (‘LH’) 𝑠𝑃2 = ൝2, if 𝑞 = {}

2, if 𝑞 = {(1, 0)} (‘HH’)
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I only allow two proposer strategies, LH, whichmakes low offers by default, but
high offers to a responder with a positive reputation (i.e. known to reject low
offers), and HH, which makes high offers unconditionally. The other possible
proposer strategies, not included, are LL, which is weakly dominated by LH,
and HL, which is weakly dominated by HH as it makes low offers speciϐically to
responders known to reject them, with predictably poor results.

Responder
H L

Proposer
HH 2, 2 2, 2

LH if q={} 0, 0 3, 1
if q={(1,0)} 2, 2

Table 4.5.2: Strategic‑form representation of an ultimatumminigamewith pos‑
itive reputations

The strategic‑form representation of this game is shown in table 4.5.2. Note,
only H‑responders can exhibit the signal. The negative reputations considered
in the previous section beneϐited proposers by allowing them to lower their
offers safely, to the detriment of responders. Positive reputations beneϐit pro‑
posers in a different way, by helping them avoid rejections when they make
low offers by default. Positive reputations help H‑responders in two ways: by
raising the offers they receive and by helping them avoid rejections.

It can be seen from the table that, without any information, both (HH, H)
and (LH, L) are NE, but only the latter is subgame‑perfect. On the other hand, if
the signal were always receivedwhen interactingwith H‑responders, then (HH,
H) and (LH, H) would both be SPNE. But such perfect observability is hardly
realistic. If proposers could only observe the signal with a positive probability
smaller than one, then LHwould no longer be a best response to H as its payoff
would be some weighted average of 0 and 2, while HH gives 2with certainty.

Endogenous information plays an integral role in the analysis. Responders,
facing amixofHH‑ andLH‑proposers, get the samepayoff againstHH‑proposers
regardless of what their demands are, so their best response between H and
L will be determined solely by what expected payoff they obtain against LH‑
proposers, even if the latter’s frequency is very low in the proposer population.
Responders’ best response against LH‑proposers depend critically on informa‑
tion. If the probability with which an H‑responder’s (1, 0) signal is observed
by responders – call this probability 𝑦∗𝐻 – were less than 0.5, L would be best,
while if the probability were more than 0.5, H would be best.

Suppose responders play H with high frequency. Then proposers would do
better to play HH (supposing 𝑦∗𝐻 < 1 at all times). But if proposers mostly
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switched to HH, then very few low offers would be made, and 𝑦∗𝐻 would conse‑
quently be low. This means responders would do better if they switched to L.
If enough of them do so, proposers would do better to switch to LH. But this
raises 𝑦∗𝐻 , which creates and incentive for responders to switch to H again, and
so forth. We conclude that, if endogenous information is taken into account,
there cannot be an equilibrium in pure strategies, indicating that there must
instead be a mixed‑strategy equilibrium.

The mixed strategy equilibrium can be calculated using the indifference
principle of mixed strategies: 𝑦∗𝐻 would need to be 0.5 to make the expected
payoff of H‑ and L‑responders equal. Responders would need to mix H and
L with equal probabilities to make proposers indifferent between HH and LH.
The proposer mix in the equilibrium would need to ensure that 𝑦∗𝐻 = 0.5, so
would depend on the information parameters. From (4.13), taking note that
the signal can only result from an interaction between an H‑responder and an
LH‑proposer when the signal is not observed by that proposer,43

𝑦∗𝐻 = 𝑦𝐻({(1, 0)})
= 1 − ൫1 − 𝛼𝑥𝑃𝐿𝐻(1 − 𝑦∗𝐻)൯

𝑧 .
Taking 𝑦∗𝐻 = 0.5 on both sides and solving,

𝑧ඨ1
2 = ቆ1 − 𝛼𝑥𝑃𝐿𝐻 ቆ1 −

1
2ቇቇ

𝑥𝑃𝐿𝐻 =
2 − 2ቆ𝑧ට1

2ቇ

𝛼 (4.23)

If 𝑧 = 1, this cannot yield values for 𝑥𝑃𝐿𝐻 that are in the interval [0, 1], except if
𝛼 = 1, in which case there is a mixed equilibrium where 𝑥𝑃𝐿𝐻 = 1. For values
of 𝛼 < 1, there are no mixed strategy equilibria. There are more possibilities
when 𝑧 > 1, with mixed equilibria in the interior, i.e. 0 < 𝑥𝑃𝐿𝐻 < 1.

Before interpreting themeaning of thesemixed strategy equilibria, we need
to investigate whether they can be reached andmaintained by evolutionary dy‑
namics. Onewould normally expect evolutionary ϐixed points near NE, but they
may not necessarily be stable and the dynamics are complicated by mutation.

43This arrangement results in somewhat surprising calculations, e.g. if 𝑧 = 1, 𝛼 = 1 and
every interaction is between an LH‑proposer and an H‑responder, what is the probability with
which the (1, 0) signal can be observed by the LH‑proposers? Suppose the answer is 1; but
then LH‑proposers would always make H offers to H‑responders and the signal could never
be observed, so 1 cannot be correct. There is a strong negative feedback effect for this type of
signal. The correct answer is 0.5 – exactly half of these interactionsmust result in rejections for
a random sample of one interaction, perfectly observed, to yield the signal with a probability
of 0.5.
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(a) 𝑧 = 1, 𝛼 = 1, 𝛿 = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

xPHH

0.0

0.2

0.4

0.6

0.8

1.0

xRH

(b) 𝑧 = 5, 𝛼 = 0.4, 𝛿 = 0.01
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(c) 𝑧 = 5, 𝛼 = 0.4, 𝛿 = 0.05
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(d) 𝑧 = 8, 𝛼 = 0.7, 𝛿 = 0.05

0.0 0.2 0.4 0.6 0.8 1.0

xPHH

0.0

0.2

0.4

0.6

0.8

1.0

xRH

(e) 𝑦∗𝐻 = 0.44 (ϐixed)
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(f) 𝑦∗𝐻 = 0.52 (ϐixed)

Figure 4.5.3: Phase portraits for a minigame with positive reputations
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A trajectory plot for 𝑧 = 1, 𝛼 = 1 is shown in ϐigure 4.5.3a. Note that
these trajectory plots show the frequency of HH on the horizontal axis to al‑
low easy comparison with previous ϐigures, where the higher offers are on the
right‑hand‑side.44 All trajectories converge to a stable equilibriumpointwhere
𝑥𝑃𝐿𝐻 = 0.986 and 𝑥𝑅𝐻 = 0.335 (indicated by a dot on the graph), which is not par‑
ticularly close to the mixed strategy NE indicated above (indicated by another
dot). The difference can be explained by the effect of mutation.45

Further detail of the state at the evolutionary equilibrium is given in the ϐirst
row of table 4.5.3. It conϐirms that an H‑responder will be recognized as such
from his reputation with a probability of 0.496 which is near the theoretical
maximum of 0.5 for the information parameters. The substantial frequency of
H‑responders combined with availability of information makes LH‑proposers’
expected payoffs slightly higher than HH‑proposers’ (2.33 vs. 2.00). Both types
of responders get quite low expected payoffs, 1.015 for L‑responders and 1.008
forH‑responders, only slightly above themaximin payoff1, indicating that prac‑
tically the entire beneϐit of the information accrues to LH‑proposers. High of‑
fers get made approximately 18% of the time, so the average offer is approxi‑
mately 1.18, or 29.4% of the total amount. The equilibrium is inefϐicient, with
a rejection rate of 16.6%. Since positive reputations can only come from rejec‑
tions, an equilibrium based on positive reputations will necessarily have some
level of rejections, hence inefϐiciency.

Can more favourable information parameters be more beneϐicial to respon‑
ders? Can they lead to more efϐicient equilibria? The problem is that if LH‑
proposers only look at a sample of one past interaction, they need to observe,
on average, one rejectionof a lowoffer for everyhighoffer theymake, since high
offers do not generate information. If responders considered a larger sample,
then a small rejection rate could generate a proportionally higher probability
of the positive reputation being observed by proposers.

Consider the case where 𝑧 = 5 and 𝛼 = 0.4. Using the above reasoning and
equation (4.23), the mixed NE here can be calculated to be at the coordinates
(𝑥𝑃𝐻𝐻 , 𝑥𝑅𝐻) = (0.3528, 0.5). Trajectories for this case are plotted in ϐigure 4.5.3b
which shows somewhat exotic dynamics (see also no. 2 in table 4.5.3). There is

44Here, however, offers can be high on the left‑hand‑side as well, depending on the probabil‑
itywithwhich the LH‑observers see the (1, 0) signal, inwhich case theymake high offers. Since
this probability is ordinarily below one, we have higher average offers towards the right‑hand
side.

45Trace a trajectory (indicated by an arrow) that starts at the NE coordinates (0, 0.5). We
see rightwards movement from this point, which is due to mutation. At the NE, proposers get
the same expected payoff from LH and HH, so there is no selection pressure to counteract the
rightwards force of mutation. But this causes 𝑦∗𝐻 to decline slightly below 0.5, which reduces
the expected payoff to H‑responders a little (refer to table 4.5.2), so there is also downwards
movement. The greater frequency of L‑responders again favours LH‑proposers, so there is left‑
wards movement again. At the evolutionary equilibrium, the forces of selection and mutation
are perfectly balanced, which is not the case at the NE.
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Conditions Proposers Responders

No. 𝑧 𝛼 𝛿 Initial LH HH L H 𝑦𝐻∗ Reject

1 1 1 0.01 Any 0.985 0.015 0.666 0.335 0.496 0.166
2 5 0.4 0.01 None 0.353 0.647 0.503 0.497 0.500 0.161
3 5 0.4 0.05 Any 0.361 0.640 0.516 0.484 0.497 0.155
4 5 0.7 0.05 None 0.256 0.744 0.459 0.541 0.516 0.067
5 8 0.7 0.10 Any 0.304 0.697 0.424 0.576 0.551 0.078
6 1 0.3 0.01 Any 0.995 0.005 0.991 0.009 0.230 0.007
7 9 0.99 0.01 None 0.166 0.834 0.487 0.513 0.502 0.042

Table 4.5.3: Minigame 2 (Positive reputations) characteristics of selected equi‑
libria

a central point, indicatedby adot, which is in fact the system’s only evolutionary
equilibrium, almost exactly at the mixed NE’s coordinates, and it happens to be
unstable.46

Trajectories spiral outwards from this point, until it reaches a regular pat‑
tern with large oscillations, indicated by the dark orbit that all of the trajecto‑
ries eventually converge to. This is a limit cycle. The orbit’s clockwise direction
can be explained by the same reasoning I used above to argue that there can be
no NE in pure strategies: every time 𝑦∗𝐻 is high, H‑responders surge, followed
by a surge in HH‑proposers (who do not risk rejection as the LH proposers do),
which destroys the ability of H‑responders tomaintain positive reputations (𝑦∗𝐻
drops to practically zero), causing HH‑proposers’ frequency to collapse, and
the cycle is repeated again. This dynamical behaviour reveals a big problem
with positive reputations: their very success leads to their undoing, because a
high frequency of H‑responders is inevitably followed by proposers switching
to unconditional high offers. Lack of information is particularly damaging to
H‑responders’ relative ϐitness as they must reject the resulting low offers from
LH‑proposers.47

Can the evolutionary equilibrium in this model ever be stable? The general
pattern of stable oscillations seems to hold for many parameter values, but I
will illustrate a modiϐication that can give a different result. In ϐigure 4.5.3c,

46The precise coordinates (0.3526, 0.497)were determined by running the computer simu‑
lation backwards from a point in the interior of the orbit. This was achieved by setting 𝜏 to a
small negative value. Initially, this did not work as anticipated due to small errors that accumu‑
lated when the simulation was reversed, which tended to break the unity sums of the distribu‑
tions. This could be countered by re‑normalizing frequency distributions at every step.

47In the negative reputation model, lack of information is not so damaging, as the default
offer of the dominant HL‑proposers in high‑offer equilibria is high.
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the dynamics converge towards the mixed evolutionary equilibrium from all
initial points. The only difference is that the mutation rate has been increased
(𝛿 = 0.05); the mechanism is, straightforwardly, mutation pushing the state
towards the interior fromall directions, thus the trajectories are altered slightly
so they spiral inwards instead of outwards. It is not clear which of the two
systems is more realistic, but it is useful to know that both possibilities exist.
In ϐigure 4.5.3d, the information parameters have been substantially increased
(𝑧 = 8, 𝛼 = 0.7) while maintaining the higher mutation rate 𝛿 = 0.05. The
equilibrium is further to the right, but the higher mutation rate now fails to
stabilize it – trajectories again converge to a limit cycle, similar to ϐigure 4.5.3b,
but less dramatic. Further boosting mutation does stabilize it (no. 5 in table
4.5.3).

With such strong information parameters, these equilibria are much more
efϐicient due to the high frequency of HH‑proposers, and average responder
payoffs are also higher, approximately1.72. Evenwhen the systemoscillates, of‑
fers are high 78.4% of the time (averaging over time), so on average proposers
offer 44.6% of the total amount to responders, which may be comparable to
various experimental results. The average rejection rate is still positive but rea‑
sonably low at 7.5%.48

Itmust be emphasized that the oscillating behaviour and instability of some
equilibria are purely due to endogenous information. Figures 4.5.3e and 4.5.3f
show systems in which endogenous information has been removed by ϐixing
𝑦∗𝐻 at two different levels.49 This shows that an analysis of positive reputations
that neglects to incorporate endogenous information could result inmisleading
conclusions.

To summarize the results for the positive reputation models: these models
show mixed strategy equilibria due to the inherent tendency of strong infor‑
mation on positive reputations to undermine itself. Dynamic systems based
on positive reputations often do not show a stable equilibrium point but limit
cycles and oscillatory behaviour. When stable, the equilibria are inefϐicient, be‑
cause maintaining positive reputations require regular rejections. One attrac‑

48Oosterbeek et al. (2004)’s meta‑study ϐinds an average rejection rate of 16% in UG exper‑
iments, with high variation between studies. There are numerous possible explanations for
this apart from an instinctive need tomaintain a positive reputation, so I would not necessarily
expect any of the simple evolutionary models to match empirical results closely, though it re‑
mains a plausible theory that there is a link between positive rejection rates and concern with
positive reputations.

49The critical aspect of endogenous information is the own‑population effects for proposers.
It can clearly be seen by comparing the locus of points of the trajectories where 𝑑𝑥𝑃/𝑑𝑡 =
0, i.e. the points where the curves have a vertical slope. With endogenous information, the
locus traces out a downwards‑sloping line, indicating that the best response for proposers are
affected not only by responder strategies but also by 𝑥𝑃, while in ϐigures 4.5.3e and 4.5.3f these
loci are perfectly horizontal and indicate the level of 𝑥𝑅𝐻 where the proposer’s best response
changes from LH to HH.
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tive aspect of the positive reputationmodel is that it avoids the bistabilism seen
in the negative reputation model. A consequence of this is that, provided infor‑
mation parameters are strong enough, reputations can arise ex nihilo, so the
model can give an account of how a society can develop norms for more equal
distributions and rejections of low offers where such norms did not exist be‑
fore.50

4.5.5 Model 3: Negative and positive reputations
Responders have no natural choice to utilize negative or positive reputations
or not – they only accept or reject offers. We have seen that if proposers are re‑
sponsive only to negative reputations, we can obtain positive results, but it can
be difϐicult to get out of a low‑offer equilibrium. A high‑offer equilibrium can be
sustained by negative reputations, despite the endogenous information model
indicating that in such situations the actual amount of information available to
proposers isminimal. On the other hand, if proposers are sensitive only to posi‑
tive reputations, it is possible to get out of low‑offer equilibriums if information
parameters are reasonable. However, the equilibria they produce appear to be
inherently unstable as a result of endogenous information, and oscillations and
inefϐiciency typically result.

There is no natural reason why proposers should be sensitive to the one
or the other, but not to both types of information simultaneously. Therefore, I
investigate a model with both types of information, which is still a minigame
with only two possible offers. There are now four conceivable information sets:
the empty set, the positive and the negative signals and their combination. But
a responder with a ϐixed pure strategy can never be observed to both accept
and reject low offers, so only three signal sets can be observed. Initially, I only
include two proposer strategies, as summarized below:

$ = 4
𝐴𝑃 = {2, 1}
𝑀 = {(1, 1), (1, 0)}
𝑄 = {{}, {(1, 1)}, {(1, 0)}}
𝑆𝑃 = {𝑠𝑃1 , 𝑠𝑃2 }

50The key to understanding why the UG’s SPNE can be escaped with positive reputations is
that the proposer strategy that is conditionally responsive to positive reputations weakly dom‑
inates one that makes low offers unconditionally. Even if all responders accepted low offers,
it would cost nothing for proposers to switch to a strategy like the LH strategy in the positive‑
reputationmodel thatmakes high offers to a responder only if the responder has beenobserved
to reject a low offer. Additionally, the probability of such a signal being observed, 𝑦∗𝐻, is high
when most offers are low. In the negative reputations model, information is also strong near
theUG’s SPNE, but HL strategies only becomebetter responses than LL once a substantial share
of responders demand H.
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where

𝑠𝑃1 = ൞
1, if 𝑞 = {}
1, if 𝑞 = {(1, 1)}
2, if 𝑞 = {(1, 0)}

(‘LLH’) 𝑠𝑃2 = ൞
2, if 𝑞 = {}
1, if 𝑞 = {(1, 1)}
2, if 𝑞 = {(1, 0)}

(‘HLH’)

The twoproposer strategies are effectively the twosophisticated strategies from
the aforegoingmodels, respectively LLH responds to positive reputations as the
LH strategy in the positive reputation model and HLH responds to the negative
strategy as HL does in the negative reputation model. They only differ in their
default offer if they see the empty signal set {}. While having only two proposer
strategies is convenient for allowing two‑dimensional phase portraits, there is
some justiϐication for the exclusions as all other possible responder strategies
are weakly dominated by these two, including LLL and HHH which are weakly
dominated by LLH and HLH respectively.51
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(b) 𝑧 = 5, 𝛼 = 0.4

Figure 4.5.4: Phase portraits for a minigame with negative and positive reputa‑
tions (𝛿 = 0.01)

Two trajectory plots are shown for low and moderate information parame‑
ters in ϐigure 4.5.4, with the frequency of HLH‑proposers measured on the hor‑
izontal axis. The ϐirst graph looks much like the bistable negative reputation

51This leaves HHL, HLL, LHL and LHH, which are weakly dominated by HHH, HLH, LLL and
LLH respectively.
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model, e.g. ϐigure 4.5.2b,52. It is a true high‑offer equilibrium with high offers
being made 99% of the time, and both L‑ and H‑responders enjoying very high
average payoffs of 1.98. As in the negative reputation model, the equilibrium
is supported by very little information ‑ the probability of observing a nega‑
tive signal for a L‑responder is 0.01 and the probability of observing a positive
signal for an H‑responder is 0.005. The equilibrium is efϐicient as the overall
rejection rate is very low (0.005). Since proposers are almost all of the HLH
type, it must be mostly the negative reputation mechanism that maintains the
equilibrium.

Figure 4.5.4b shows the situation if 𝛼 is raised. The system is no longer
bistable, and contains only the high‑offer equilibrium. This is somewhat simi‑
lar to the negative reputationmodelwhen there is only a high‑offer equilibrium,
e.g. ϐigure 4.5.2d, but note from ϐigure 4.5.1c that for these parameter values,
the negative reputationmodelwould havebeenbistable. Thedirection ofmove‑
ment is also different from ϐigure 4.5.2d, especially near the lower‑left corner
(the UG SPNE), where there is upwards movement, suggesting H‑responders
have an expected payoff advantage in this area. This suggests that positive repu‑
tations can be effective in bootstrapping a systemout of a low‑offer equilibrium
withmodest information parameters, which accords with what the analysis for
positive reputations above suggests.

I ran a full sweep of simulations for the combined negative and positive rep‑
utation model under different information parameter values, each with three
different initial states as before; the results are presented in ϐigure 4.5.5b. For
side‑by‑side comparison, I reproduced ϐigure 4.5.1c next to it as ϐigure 4.5.5a.
Interestingly, there are no additional parameter value combinations for which
high‑offer equilibria are stable, but there are many more parameter combina‑
tions that were bistable in the negative‑reputation model but now have only a
high‑offer equilibrium. In no case did the system exhibit oscillatory behaviour,
as in the positive‑reputation models.

It can be concluded that positive reputations are more relevant in states
where mostly low offers are made, as they provide a potential mechanism that
rewards responders for rejecting low offers even when all offers are low, while
negative reputations are more effective at maintaining high‑offer equilibria ef‑
ϐiciently and with low informational requirements.

4.5.6 Beyondminigames
I have considered threeminigames, as 2×2models are analytically convenient
toworkwith, but there aremanymorepossibilities that canbe generatedby the
information framework. I will brieϐly explore a few possibilities here without

52The high‑offer equilibrium (indicated by a dot) is at a lower frequency of H‑responders
than in ϐigure 4.5.4, but this is mainly just because parameter values 𝛼 and 𝑧 are different
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Figure 4.5.5: Minigame equilibria with negative and positive reputations (𝛿 =
0.01)
Key: L: low‑offer equilibrium only H: high‑offer equilibrium only +: bistable.

detailed analysis.
Firstly, consider a model with combined negative and positive reputations

with an unrestricted proposer strategy set, thus including all eight proposer
strategies, using parameter values 𝑧 = 5, 𝛼 = 0.4 and 𝛿 = 0.01. From different
initial states (including unconditional low‑offers and lowdemands), thismodel
reaches a high‑offer equilibrium quite similar to the one above in ϐigure 4.5.4b.
Most of the weakly dominated strategies dropped to approximately zero, but
the proposer strategy HHH53 (making high offers unconditionally) shows a fre‑
quency of 0.15 in the equilibrium, which it could reach due to mutational drift
and the fact that its expected payoff is only slightly less than that of HLH, which
shows a frequency of 0.71. There are also smaller positive frequencies of HLL
and HHL, for similar reasons. The presence of some unconditional high offers
then results in the equilibrium frequency of H‑responders being much higher
at 0.991. Running the model again with 𝛼 = 0.01 resulted in a low‑offer equi‑
librium similar to the one shown in ϐigure 4.5.4a, this time with a mix of LLH
(frequency 0.834) and unconditional low offers LLL (frequency 0.153).

Next, consider a model with another signal type included, namely (2, 1).
The motivation for this is that an observation of a responder receiving a high

53The three H’s are respectively the offers made in response to observing {}, {(1, 1)} and
{(1, 0)}.
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offer and accepting it may be informative because the proposer who earlier
made that high offermayhave hadbetter information about the responder than
is available presently. Including three possible signals results in six possible
signal sets after eliminating two that contain contradictory signals that could
never occur together. This results in a total of 64 possible proposer strategies.

If signal set ___ observed, then offer ___

{} L
{(1,1)} L
{(1,0)} H
{(2,1)} H

{(1,1),(2,1)} L
{(1,0),(2,1)} H

Table4.5.4: Sophisticatedproposer strategy in gamewith threepossible signals
(low‑offer equilibrium)

Despite repeating the simulations under numerous parameter value com‑
binations, I found that the (2, 1) signal was ignored by prevailing proposers in
almost all cases. Since the signal is noisy (high offers could have been made to
L‑responders by some suboptimal mutant proposers), conditions would have
to be just right for it to be optimal to condition offers on the information. Even‑
tually, for the parameter values 𝑧 = 20, 𝛼 = 0.06, 𝛿 = 0.3, the expected so‑
phisticated responder strategy described in table 4.5.4 was found to have the
highest expected payoff of all (though by a tiny margin).54 Generally, however,
the usefulness of this kind of information in this setting is clearly limited. Itmay
be more useful in settings in which a proposer’s own observations can be erro‑
neous, there are mixed strategies or if strategies evolve while being sampled.

Finally, consider a model in which the total money amount is increased to 6
and the set of possible offers increased to {1, 2, 3}. Even allowing only a limited
set of signals, {(1, 0), (1, 1), (2, 0), (2, 1)}, results in eight possible signal sets
and 6561 possible proposer strategies (and three responder minimum accept‑
able offer strategies). Tracking this many strategies is computationally inten‑
sive, but it was possible to identify a stable equilibrium.55

54The highermutation rate is presumed to be necessary to inducemore diversity in the popu‑
lations so as to generate more instances of rare types of interactions. The high 𝑧 (more so than
a high 𝛼) appears to be necessary to increase the probability of observing multiple signals at
the same time.

55The time to compute each 𝜏‑step is much longer, but also the number of time periods of
simulation needed to reach a stable equilibriumwas dramatically larger. I terminated the com‑
puter simulation after running for approximately 57 hours, with the maximum 𝜏‑step‑change
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If signal set ___ observed, which predicts that responder’s MAO is ___, then offer ___

{} 2 (93.4%) or 3 (6.2%) 2
{(1,0)} 2 (65.1%) or 3 (34.9%) 3
{(1,1)} 1 1
{(2,0)} 3 3
{(2,1)} 2 (99.97%) 2

{(1,0),(2,0)} 3 3
{(1,0),(2,1)} 2 2
{(1,1),(2,1)} 1 1

Table 4.5.5: Sophisticated proposer strategy in gamewith four possible signals
(medium‑offer equilibrium)

The equilibrium reached (with 𝑧 = 5, 𝛼 = 0.4, 𝛿 = 0.01) is a medium‑
offer one with a modal offer of 2, i.e. a third of the total amount. Responders
demand 2with a frequency of 0.983 and 3with a frequency of 0.013. The most
frequent proser strategy, with a frequency of 0.869, also the one with highest
expected payoff, is described in table 4.5.5. The middle column shows what a
signal set predicts, given actual responder strategy and signal set frequencies
per responder type. Proposers only see the signal sets, so need to learn what
each one means.

The proposer strategy shown is quite sophisticated, correctly making op‑
timal offers for every possible signal set. The most interesting case is when
the {(1, 0)} signal set is observed, which shows the proposer knows that the
responder had rejected an offer of 1 in the past, but nothing else. One could
think that the best offer to make in this case would be 2, but, surprisingly, the
proposer offers 3 instead. The middle column reveals the reason: while it is
indeed most likely that the responder’s MAO is 2, the probability that it is 3 is
high enough at 34.9% that the proposer would be facing too high a risk of re‑
jection by offering 2.56 The {(1, 0)} signal set predicts a MAO of 3 with such

in all frequencies having reduced to below 0.0000001 (but not below 0.00000001 as before),
which is good enough to indicate a stable equilibrium has indeed been found. Among other
possible optimisations, the model could be simpliϐied by eliminating proposer strategies that
make different offers for strategy sets {(2, 0)} and {(1, 0), (2, 0)}, as they contain the same ef‑
fective information given the MAO assumption for responder strategies, or similarly {(1, 1)}
and {(1, 1), (2, 1)}, although one might also be interested to see if proposers can learn this for
themselves.

56Offering 2 instead of 3 gains 1 with probability 0.651 and loses 3 with probability 0.349,
which results in an expected loss of 0.396. The actual expected payoff advantage of offering 3
rather than 2when observing {(1, 0)} is slight (3.9752 versus 3.9750) given the low frequency
of responders with a MAO of 3 (1.3%). If mutation rates were higher or signals were observed
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a high probability because responders with a MAO of 2 are highly likely to be
offered 2, thus exhibiting alternative signal sets {(2, 1)} or {(1, 0), (2, 1)} with
high probability. It is therefore the absence of (2, 1) rather than the presence of
(1, 0) in this information set that interests proposers.57 Proposers have more
accurate information on responders with a MAO of 2 than on those with a MAO
of 3, and evolution has endowed them with behaviour that seems to recognize
this.

As these examples show, there are many interesting opportunities to ex‑
plore, though further development of practical methods to simulate large mod‑
els with many strategies will be needed. The main limitation is the large num‑
ber of proposer strategies that can be generated from even a small number of
possible signals and offer amounts. Further progress will likely require sensi‑
ble restrictions on proposer strategy sets, and methods to model only a small
set of possible strategies at a time.

4.6 Conclusion
Many decades ago, Thomas Schelling (1956) explained that the need to main‑
tain one’s reputation can act as a powerful commitment device. A bargaining
party is supposed to recognize that their opponent, concernedwith her reputa‑
tion, will not accept an inferior offer, because the cost of damaging a good rep‑
utation outweighs the cost of rejecting the offer. The opponent, sophisticated
enough to know that her commitment will be recognized as credible for this
reason, can increase her prospects of success by emphasizing and reinforcing
the logic of her strategy during the bargaining process.

The adaptive, heuristic behaviour that evolutionary models seek to explain
ismuch less sophisticated: here, agents simply learn through experience or imi‑
tation, or know from received norms or instincts that have evolved during some
past time, that it is better tomakemore reasonable offers, and to reject badones.
Both kinds of theory, however, encounter the same paradox, which Schelling
identiϐied but did not fully resolve: successful threats, unlike promises of re‑
ward, do not need to be executed. The conundrum is that it is not clear how a
reputation can then be established. The opportunity to prove one’s sincerity
is inseparable from the very outcome one is trying to avoid. In the context of
international military conϐlict, Lieberman (1994, p. 416) spells the implication
out explicitly: some instances of failure, even repeated failures, are a necessary
condition for successful deterrence.58

noisily, however, such sophistication could render greater rewards.
57Similarly, the probability of the responder being a MAO 3 type, conditional on observing

the empty signal set {} is 6.1%, even though their overall frequency is only 1.3%. In this case,
however, the probability is not high enough to incentivize proposers to offer 3 instead of 2.

58One should hope that war is not the only effective way to achieve peace. I would not make
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The analysis and simulations results in this chapter support similar conclu‑
sions. A theory in which the outcome hinges on reaction to a demonstrated
commitment to a speciϐic course of action, i.e. reputations based on facts rather
than cheap talk, cannot be complete unless the conditions needed to generate
and communicate a track record are addressed. If those conditions are system‑
atically linked to the outcome of the model, the model must have endogenous
information in the sense that I have used it. If the outcome that generates use‑
ful information is an adverse one that is supposed to be deterred by reputation,
then some positive frequency of deterrence failure must occur alongside suc‑
cesses. The questions then arise whether reputations can generate enough in‑
formation, given endogeneity of information, for them to be effective, whether
such behaviour can be learned and whether such outcomes can be stable.

The general framework developed in section 4.3 deϐines an endogenous in‑
formation equilibrium for a population gamewhere the information generated
by a pattern of observable behaviour (actions) is consistent with the behaviour
induced by the information for some distribution of information‑contingent
strategies. In the framework, information consists of a probability distribution
over signal sets for each possible strategy of the ϐirst player. A signal set is
a collection of signals, which are observations of speciϐic action proϐiles involv‑
ing the second player. The framework allows the ϐirst player to receivemultiple
signals of different kinds simultaneously and react to their combination.

By considering all possible action proϐiles as potential signals, a more holis‑
tic view of reputation applicable to the ultimatum game is formed. This leads
to the identiϐication of two kinds of reputation even in a simple minigame with
only two possible offer amounts, namely negative reputations (knowledge of
having accepted a low offer) and positive reputations (knowledge of having re‑
jected a low offer), which improves on existing analyses that considers only
negative reputations.59

The negative‑reputation minigame (sections 4.4 and 4.5.3) results in a low‑
offer or a high‑offer equilibrium under particularly weak or strong informa‑
tional parameters (sample size 𝑧 and observation probability 𝛼) respectively,
but there is a large range of intermediate infomration parameter values that
result in bistable systems with both low‑ and high‑offer equilibria. Paradox‑
such a claim, nor do I claim that, in the ultimatum game, reputation is the only mechanism
that can ensure fair offers. Theories can be regarded as complete not when they answer every
question, but when they are self‑consistent and answer at least more than they ask.

59Akdeniz and Van Veelen (2023) do allow responders to raise their offers above their de‑
faults if they learn a responder’s MAO is higher, so their model includes negative and positive
reputations. They do not identify or investigate them as such, nor do they offer a deterministic
version of their model that allows a comprehensive analysis of equilibria and stability. Zhang
et al. (2023) assign a “good” reputation whenever a responder rejects a low offer and a “bad”
reputation whenever a responder accepts a low offer, but their model still has only two possi‑
ble reputations (because there is never “no reputation”), so their effects cannot be identiϐied
independently.
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ically, in the low‑offer equilibrium, proposers have strong information about
responders, but in the high‑offer equilibria, they have very weak information.
But the payoff structure of the game prevents a low‑offer equilibrium from be‑
ing escaped unless information is almost perfect, while on the other hand a
high‑offer equilibrium can be sustained by very little information. In the latter,
the addition of a small mutation rate generates occasional random low offers,
which provides just enough information to provide the necessary incentives to
proposers to make high offers and responders to reject low offers.

Positive reputations (section 4.5.4) give completely different results. In con‑
trast to negative reputations, positive reputations can be used effectively to get
out of low‑offer equilibria, thus allowing relatively “fair” outcomes to emerge
without requiring prior behavioural norms. But thesemodels showan inherent
instability, because positive reputations, once established, have a strong nega‑
tive effect on their own effectiveness: if responders are successful in deterring
proposers from making low offers to them, they do not get opportunities to
prove that they would reject them. The effect of a lost reputation is immedi‑
ate and severe, because the default offer of prosers in this case is low, unlike
in the negative reputation model where the default offer is high and avoiding
a negative reputation when high offers are made is comparatively easy.60 The
positive reputationmodels have onlymixed‑strategy equilibria, and the equilib‑
ria are often unstable, leading to dynamic systems with limit cycles and oscilla‑
tions. They also feature a signiϐicant positive rate of rejections, up to 16.6% in
the results presented, which are inefϐicient but not necessarily unrealistic. Fi‑
nally, I combine both reputation types in a single model and ϐind that they have
complementary effects: positive reputations can bootstrap the system out of
a low‑offer situation, while negative reputations are then useful to stabilize a
high‑offer equilibrium and improve efϐiciency.

These results contribute to the understanding of experimental data, where
relatively equal divisions in the ultimatum game are commonly found. Further
work is needed to analyse gameswith larger signal and strategy spaces. I brieϐly
explored a few models in the last section, indicating that sophisticated strate‑
gies exhibiting subtle strategic uses ofmultiple kinds of information can evolve.
The endogenous information framework that has been developed in this chap‑
ter is not tied to the ultimatum game or any speciϐic kind of evolutionary dy‑
namics so could easily be applied to any other situation where the ϐirst player
reacts to the distribution of past play of the second player, including other types
of bargaining interactions and traditional signalling applications.

60Lack of stable high‑offer equilibria in the negative reputation model under weak informa‑
tion conditions arise due to a more indirect effect: if L‑responders cannot be detected, the
relative payoff advantage to H‑responders are diminished, leading to a high frequency of L‑
responders invading and consequently HL‑proposers being replaced by LL‑proposers.
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Conclusion

Over the decades, the ultimatum game (UG) has emerged as one of the most
extensively studied games, rivalling the prisoners’ dilemma. Both games are
characterized by their inherent simplicity, yet they yield paradoxical and unex‑
pected outcomes. In the prisoners’ dilemma, the paradox lies in the fact that the
strategy that is individually optimal is detrimental to the collective, prompting
generations of students to think deeply about the meaning of rational choices
that lead to lower payoffs. In theUG, the paradoxical result is that players are ex‑
pected to behave inways that are generally perceived as highly self‑serving and
unfair, which has prompted deeper inquiries into humanmotives and social be‑
haviour, leading to much greater understanding of these issues. A substantial
body of experimental research have shown that individuals do not often behave
in the manner predicted by the theory; rather, they appear to be concerned
about the impact of their choices on others (Cooper and Kagel, 2016).

Yet there is another kind of paradox in theUG,which is that the selϐish result
that seems to follow very straightforwardly from basic game theorymay not ac‑
tually be a reasonable prediction, even for purely selϐish people, if those people
are imperfectly rational. In parallel to the ongoing experimental research, there
has also been a smaller, but signiϐicant research stream considering evolution‑
ary explanations for behaviour in the UG. It is not always recognized explicitly,
but evolutionary models can make two distinct contributions: they can either
serve as a crude proxy for boundedly rational learning in interactive situations,
or they can generate simpliϐied accounts of historical genetic and cultural evo‑
lutionary processes that have over time shaped human behavioural norms and
social preferences.

Keeping these dual uses of evolutionary game theory in mind, I have used
the model of Gale, Binmore, and Samuelson (1995) (GBS) as a baseline model
to explore different research questions aimed at providing and critically inter‑
preting explanations from evolutionarymodels for empirical results. Themain

134
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result ofGBS1 is that the evolutionarydynamics can come to rest at anasymptot‑
ically stable evolutionary equilibrium where proposers in the UG make offers
substantially higher than the minimum to responders, and responders reject
low offers lower than the modal one. GBS add mutational noise to their model,
at a low rate, showing that the shape of the noise is important for obtaining sta‑
ble imperfect equilibria. But it would be wrong to think of the result as being
caused by the noise, given that the added noise can be vanishingly small, and
the result still obtained. Hence, I refer to such models as baseline models.

As I conclude at the endof chapter 3, the value of theGBSmodel (and similar
models) and its results is not so much about the stability or instability of any
particular equilibrium point, but rather what we learn about the UG’s strate‑
gic structure: responders learn more slowly than proposers, due to differing
payoff gradients, and overall evolution of the system in the vicinity of subgame‑
imperfect Nash equilibria is very slow. There is empirical support for these
features from experiments in which players can gain experience.2

5.1 Using minigames to explain imperfect
outcomes in the ultimatum game

Mailath (1998, p. 1349) makes the general point that evolutionary models can
be valuable in illuminating the strategic structure of games. One could go fur‑
ther and argue that a good understanding of a games’ evolutionary dynamics is
necessary for a good understanding of its strategic structure. This is the depar‑
turepoint in chapter 2,where I argue that it has not previously been established
that theminigames that have been used (by GBS and others) to analyse the UG’s
dynamics are adequate for this purpose, hence it is not clear that the full UG’s
strategic structure is well understood.

There is reason to be sceptical that the dynamic analysis for the minigame
can be transferred to a larger game with larger strategy sets. In the minigame,
an essential part of the explanation for the GBS result is that mutation keeps
responder rejection of low offers at a high enough frequency for the equilib‑
rium to be maintained. I show that maintaining such an equilibrium in the full
game requires a speciϐic responder strategy, namely the one that would reject a
slightly lower offer than the current modal offer, to be above a given frequency.

1As indicated, the same result appears in Binmore and Samuelson (1994) and Roth and
Erev (1995), the former using a the alternate version of the replicator dynamics, the so‑called
“adjusted” or discrete replicator dynamics, and the latter using reinforcement learning. It was
useful to be able toworkwith a speciϐic aggregate dynamics speciϐication, but there is no reason
to think that any of my ϐindings would not apply in the alternative, or any similar, dynamics. A
part of the research in chapter 3, however, speciϐically concerns the difference between the two
variants of the replicator dynamics.

2See references in chapter 3.
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But the required frequency is higher than themutation target for this frequency,
suggesting that mutation is pulling in the wrong direction for the explanation
to work.

To resolve this puzzle and relate theminigame’s analysis of dynamics to the
full game, a more rigorous approach is developed, relying on the analysis of
the full game’s dynamics in the form of conditional frequencies. The particular
structure of the ultimatum game causes dynamics in this conditional strategy
space to be approximately independent of higher‑amount strategy frequencies
when the full system is near an associated equilibrium. The conditional dynam‑
ics take on the same form as those in a full ultimatum game with reduced strat‑
egy sets. Moreover, it is established that the dynamics of any particular con‑
ditional strategy are almost entirely determined by the conditional frequency
of the corresponding strategy in the opposite population, and thus that a two‑
dimensional analysis based on the ultimatum minigame is feasible and appro‑
priate. The minigame explanation works as expected on conditional frequen‑
cies; in particular mutation pulls the critical responder strategy in the same
direction as in the minigame. The reason it does not work directly with un‑
conditional frequencies is that there are indirect ϐlows in the full game, which
ultimately support the frequency of the required responder strategy, that are
not easily identiϐied with direct (naive) analysis.

A better understanding is also gained of the factors affecting the difϐiculty
(i.e. the minimum required ratio of responder to proposer mutation rates) of
stabilizing any particular imperfect equilibrium. Technical advances in this
chapter include development of the technique of conditional analysis (which
is likely to be useful in other contexts) and the graphical analysis based on
selection‑mutation equilibrium loci, which proved useful in isolating the forces
of selection in mutations for each population in the dynamics.

5.2 Stochastic learning and emulation in the
ultimatum game

Various evolutionary game theorists have referred to the possibility that the
behavioural norms and preferences exhibited by subjects in experiments may
have originated in the distant past through genetic evolution, or in the some‑
what‑less‑distant past through cultural evolutionary processes. In chapter 3, I
investigate whether the GBS result may be sensibly interpreted as a model of
cultural evolution. Since the GBS model and its replicator dynamics equations
describing aggregate strategy frequency dynamics remain the same, this is a
question of reinterpretation. This requires a defensible account of what occurs
at the level of individual agents – in other words, a microfoundationsmodel for
the GBS model’s noisy replicator dynamics.
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I argue that the aspirational learning microfoundations model GBS use to
justify interest in the replicator dynamics is not well suited to explain cultural
evolutionary processes, and develop an alternative stochastic individual‑level
model, similar to amodel inWeibull (1995, p. 158),which is basedon thenotion
that people revise their strategies by imitating their relatively successful social
peers. Interpreting the GBS model in the light of this microfoundations model
leads to implications that have a somewhat negative impact on the relevance of
the GBS result for empirical results.

Speciϐically, in the standard replicator dynamics employed by GBS, which
shows the GBS result (asymptotically stable imperfect equilibria) most clearly,
individual agents learn faster the higher the average payoff for their popula‑
tion. The adjusted, or Maynard Smith, replicator dynamics do not have this ef‑
fect. This implies that the formof themodel chosen byGBS favours selection for
proposers relative to responders, which tends to strengthen their result. This
is not problematic in itself, as there is a strong argument that proposers should
pay more attention since they have more to lose from poor strategies. How‑
ever, GBS also argue in favour of applying a higher mutation rate to responders
than to responders, which multiplies the effect. This approach therefore ends
up producing a system in which the effective balance of selection andmutation
mayhave been pushed further in a speciϐic direction thanwhatmight be consid‑
ered reasonable. GBS’s assumption of higher respondermutation rates, used in
conjunctionwith the standard replicator dynamics, do not appear to have been
challenged before.

A secondnegative implication is identiϐied throughagent‑based simulations
of ϐinitepopulationsbasedon the individual‑levelmicrofoundations. It is shown
that the stability of imperfect equilibria is fragile and not robust to stochastic
disturbances found in ϐinite populations. The aggregatedynamics are a goodap‑
proximation for the underlying individual‑level stochastic model only for very
large populations well in excess of a million agents per population.

The chapter contributes to the literature on revision protocols linked to
the replicator dynamics, and illustrates that, even though different microfoun‑
dations models may lead to the same aggregate dynamics, they are not inter‑
changeable when a speciϐic research question is addressed, and can have sub‑
stantive implications for the interpretation and relevance of a model’s results.

5.3 An evolutionary perspective on good and bad
reputations in the ultimatum game

If the GBS result is fragile, the long‑run tendency of the baseline model is in‑
evitably to move towards the SPNE, which is – like the imperfect equilibria –
a stable asymptotic attractor, but unlike them, the SPNE tends to be robust
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against even relatively large stochastic disturbances. The baseline model can
therefore, at most, explain why more equal divisions survive evolutionary pro‑
cesses for extended periods of time, but the model cannot explain how such
behaviours originated. Ideally, an account is needed of how such behaviours
can arise in societies where they are not initially present.

Chapter 4 is aimed at meeting this standard, using evolutionary models of
the UGwhere proposers are able to learn about past interactions of the respon‑
ders they face, in other words where responders can develop reputations re‑
garding their behaviour. The research in this chapter represents an advance
over existing literature on at least three counts: ϐirstly, by avoiding arbitrary
assumptions about availability of information, which generally fail to link such
knowledge to patterns of interactions that can conceivably take place given the
strategy distributions of the players; secondly, by generalizing the notion of
what knowledge of past interactions can be useful to proposers; and ϐinally by
performing rigorous and comprehensive analysis of dynamics in the models.

A signiϐicant contribution of this research is the development of a ϐlexible,
general endogenous information framework for two‑player sequential games.
This framework can be used to analyse any two‑player sequential game where
the ϐirst player reacts to knowledge of the distribution of play of the second
player. It is applicable to other types of bargaining interactions and traditional
signalling applications. The framework deϐines an endogenous information
equilibrium for a population gamewherein the information generated by a pat‑
ternof observable behaviour (actions) is consistentwith thebehaviour induced
by the information for some distribution of information‑contingent strategies.
Information consists of a probability distribution over signal sets for each pos‑
sible strategy of the second player. A signal set is a collection of signals, which
are observations of speciϐic action proϐiles involving the second player. The
framework allows the ϐirst player to receive multiple signals of different kinds
at the same time, and react to their combination.

By considering all possible action proϐiles as potential signals, a more holis‑
tic view of reputation applicable to the ultimatum game is formed. This leads
to the identiϐication of two kinds of reputation even in a simple minigame with
only two possible offer amounts, namely negative reputations (knowledge of
having accepted a low offer) and positive reputations (knowledge of having re‑
jected a low offer). This improves on existing analyses that consider only nega‑
tive reputations.

A series of minigame models generated using the general framework is ex‑
plored in detail using a combination of explicit solutions and deterministic sim‑
ulations based on the standard replicator dynamics. Endogenous information
is shown to be crucial. When responders successfully use their reputations to
deter lowoffers fromproposers, opportunities tobuild reputationsbecome lim‑
ited. This indicates that equilibria relying on reputations naturally raise ques‑
tions of stability. However, reputations can result in stable equilibria with rel‑
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atively equal outcomes, i.e. in the minigame, equilibria where proposers make
the high offer and responders would reject the low offer.

In the model with only negative reputations, bistable dynamic systems are
found for a wide range of parameter values – both high‑offer (i.e. equal divi‑
sion) and low‑offer (i.e. the SPNE outcome) equilibria are stable. Paradoxically,
in the low‑offer equilibrium, proposers have strong information about respon‑
ders, but in the high‑offer equilibrium, they have very weak information. De‑
spite this, the payoff structure of the game prevents a low‑offer equilibrium
from being escaped, while a high‑offer equilibrium can be sustained by very lit‑
tle information. In contrast to negative reputations, positive‑reputation mod‑
els can evolve out of low‑offer, low‑demand states, thus providing a viable the‑
ory for howbehavioural norms resulting in equal divisions could have emerged
where they did not exist before. In models with only positive reputations, how‑
ever, there is only a mixed‑strategy equilibrium, leading to dynamic systems
with oscillations. When both types of reputation are combined in the same
model, they have complementary roles: positive reputations can bootstrap the
system out of a low‑offer state, while negative reputations are then useful to
stabilize a high‑offer equilibrium and improve efϐiciency. The ϐinal part of the
results section brieϐly explores larger models with more complex information
structures, showing that relatively sophisticatedproposer strategies can evolve,
though further work is needed in this area.

5.4 Limitations and opportunities for future
work

An obvious limitation of the research in this dissertation is that it has consid‑
ered only a single game, the ultimatum game. While the UG has its own partic‑
ular evolutionary dynamics, which has been analysed in some detail, the ulti‑
matum game is just one kind of interaction, and we are ultimately interested
in features of games and behaviour that reϐlect real‑world interactions, past
and present. We have learned that many of the features of human behaviour
that motivates interest in the ultimatum games, such as other‑regarding pref‑
erences, reciprocity and reputations, are not limited to a single game.

An interesting area that has been explored by only a few researchers such
as Samuelson (2001) and Zollman (2008) is to look at evolution in complex
environments in which players engage in more than one type of game. These
articles take seriously an idea that has also inϐluenced this dissertation, namely
that behavioural norms exhibited in a given type of game may have developed
in evolutionary context where different kinds of interactions have taken place.
Much further work is needed to clarify these ideas and produce defensible the‑
ories. There is a danger in this work, as in evolutionary theorizing generally, of
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coming upwith toomany theories and devoting too little attention to empirical
validation of these theories. This concern also applies to the work done here,
particularly in relation to the chapter on reputations in the ultimatum game.
Further attention given to this aspect would therefore be warranted.

There may be opportunities to explore the application of the conditional
frequency dynamics developed in chapter 2 to other games. Particular candi‑
dates of interest would be games with money‑amount strategy sets, e.g. the
Nashdemandgame, gameswith recursive structure such as the centipede game
or more extensive alternating‑offer bargaining games, and possibly extensive‑
form games more generally. The beneϐit would be the ability to isolate fre‑
quency ϐlows within and between subsets of strategies of particular interest,
as in chapter 2.

It is evident that the work started in chapter 4 can be taken further, both in
terms of considering reputation in larger ultimatum gameswithmore complex
strategies, and in terms of applying the endogenous framework to other games.
While the framework deϐines a population game, suggesting an evolutionary
context, it is not dependent on any particular kind of evolutionary dynamics,
so a more systematic and general treatment should be worthwhile.

More generally, there may be areas of real‑world applications other than
traditional experimental work where some notions such as noisy evolution (as
in GBS) or reputation‑building strategiesmay be able to provide useful insights.
One area of interest is the case where ϐirms set their prices using algorithms or
artiϐicial intelligence (AI) systems, in which case it would not be surprising to
see implicit collusion (Calvano et al., 2020) and even simple implicit bargaining
processes to divide the rents that may arise. Understanding whether these dig‑
ital behaviours resemble the theoretical learning and reputation‑building be‑
haviours described in this dissertation, could open avenues for exploring the
evolution of conventions and reputation‑building behaviours in such systems.
Potentially, insights from evolutionary game theory could also guide the devel‑
opment of regulatory frameworks aimed at achieving efϐicient and equitable
outcomes in such contexts. These connections suggest a broader relevance of
evolutionary models of bargaining processes to novel real‑world phenomena.
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Fehr, E. and S. Gächter (2000). Fairness and retaliation: The economics of reci‑
procity. Journal of Economic Perspectives 14(3), 159–181.

Fehr, E. and K. M. Schmidt (2006). The economics of fairness, reciprocity and
altruism – experimental evidence and new theories. In S.‑C. Kolm and J. M.
Ythier (Eds.), Handbook of the Economics of Giving, Altruism and Reciprocity,
Volume 1, Chapter 8, pp. 615–691.

Forber, P. and R. Smead (2014). The evolution of fairness through spite. Pro‑
ceedings of the Royal Society B 281.

Frank, R. H. (1988). Passion Within Reason. W Norton.

Friedman, D. (1998). On economic applications of evolutionary game theory.
Journal of Evolutionary Economics 8(1), 15–43.

Fudenberg, D. and D. K. Levine (1998). The Theory of Learning in Games. MIT
press.

Gale, J., K. G. Binmore, and L. Samuelson (1995). Learning to be imperfect: The
ultimatum game. Games and Economic Behavior 8(1), 56–90.
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Güth, W. andM. G. Kocher (2014). More than thirty years of ultimatum bargain‑
ing experiments: Motives, variations, and a survey of the recent literature.
Journal of Economic Behavior & Organization 108(Supplement C), 396–409.
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