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ABSTRACT 

 
 

 

This paper explores the dynamics of return co-movements between the largest 

economic sectors in South Africa, specifically with a view to shed light on the 

inter-sector diversification potential of domestic investors over time. It has been 

widely documented that investors have a home-bias when it comes to investing, 

and as such may be exposed to periods of increased co-movement between 

assets held locally across different sectors in their portfolios. Such periods of 

increased homogeneity in the movement of asset prices negate the benefits from 

diversification within the domestic financial market. The paper utilizes Dynamic 

Conditional Correlation (DCC) and Asymmetric-DCC Multivariate Generalized 

Autoregressive Conditional Heteroskedasticity (MV-GARCH) techniques to isolate 

the time-varying conditional correlations from the conditional variance 

component. These series are then used to study whether changes in market 

conditions and overall sentiment influence the dynamics and aggregate level of 

co-movement between sectors. The results firstly suggest that using static 

measures of historic co-movement between asset returns across sectors in order 

to evaluate a portfolio’s diversification potential are inaccurate. Significant 

leverage effects are also found in the dynamics of co-movement between the 

sector pairs, with negative shocks being followed in all cases by higher aggregate 

levels of co-movement. The results also suggest that periods of heightened 

global- and domestic market uncertainty magnifies the co-movements between 

sectors and in so doing undermines the ability of investors to diversify across 

local sectors. 
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1 Introduction 

Over the last few years there has been growing concern amongst economists and investors of the 

dangers that periods of increased homogenization of asset price movements across distinct sectors 

and financial systems pose to our ability to effectively diversify investment portfolios. In particular, it 

has become clear that in times of global economic uncertainty asset markets have shown to 

correlate strongly beyond fundamental linkages. This is largely as a result of the interconnected 

design of the global financial system and the near instantaneous spreading of information, which 

makes coordinated actions a reality in modern markets. The high correlation between equity returns 

during bear markets and the dampened correlation in bull markets, for example, have been studied 

extensively2.  

Portfolio diversification can be achieved by investing in different asset classes, across sectors and by 

investing abroad, with assets contained in the portfolio ideally having low or negative correlations. 

This strategy enjoys clear theoretical and empirical justification, though in a globalized financial 

system investors must be aware that the correlation between sectors is dynamic and can change 

abruptly given certain trigger events. As was clearly seen in the recent global financial crisis, asset 

markets can at times exhibit system-wide movements that negate the benefits of diversification at a 

time when it is most needed. 

Understanding what typically corresponds to magnified inter-sector correlation could provide 

investors and investment institutions with valuable insights into optimized portfolio diversification 

strategies. This is particularly important for portfolio managers who often rely on static estimates of 

past correlations to guide portfolio diversification decisions. This study focusses specifically on the 

dynamic nature of such co-movement in the domestic market between the main economic sectors. 

The analysis is split in two main parts. In the first the time-varying conditional correlations between 

the different sectors will be extracted by means of Dynamic Conditional Correlation (DCC) and 

Asymmetric-DCC (ADCC) Multivariate Generalized Autoregressive Conditional Heteroskedasticity 

(MV-GARCH) models proposed by Engle (2002) and Cappiello, et al (2006), respectively. 

The second part will examine the dynamic structure of the time-varying conditional correlations by 

fitting both level and differenced equation models on the series extracted in the first part. These 

models will include several variables used to explain the impact that global- and domestic 

                                                           
2 C.f. De Santis & Gerard (1997), Ang and Bekaert (1999), and Das and Uppal (2001). 
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uncertainty and market sentiment has on the co-movement of asset prices across the main domestic 

sectors. 

The findings in this paper show the shortcomings of relying on static estimates of correlation 

between assets across the local economic sectors3. In particular this emphasizes the need to better 

understand the dynamics of market correlation within South Africa when designing portfolios that 

are well diversified across local assets.  

The paper is set out as follows: The next section will provide a concise overview of the relevant 

literature, outlining the techniques that will be used in the study. Thereafter the technical aspects of 

the paper will be discussed in more detail, after which a discussion of the data and the results will 

follow. Finally a discussion of the implications of the findings will conclude the paper. 

2 Literature overview 

Modelling and explaining the dynamics of volatility in financial time-series have evolved considerably 

over the last two decades since the seminal work by Engle (1982) on Autoregressive Conditional 

Heteroskedasticity (ARCH) models. In addition to the statistical benefits of controlling for second 

order temporal persistence and conditional heteroskedasticity in asset return series4, modelling the 

conditional correlation between assets and across sectors over time is of great practical importance. 

It allows for better decision making in terms of asset and derivative instrument pricing, portfolio 

selection and risk management. The importance of studying estimates of asset return correlations 

conditional upon past information (or conditional correlations for short) is also emphasized in 

standard Markowitzian finance theory, which suggests that investors are compensated in terms of 

the mean and variance-covariance structure of asset returns.  

Over the last two decades there has emerged a large body of literature on MV-GARCH models, 

which differ in terms of the conditional volatility specifications (of which a large body of literature 

has evolved5) as well as the conditional variance-covariance matrix specifications6. The first MV-

GARCH model explicitly measuring the conditional covariance matrix between series, the VECH 

model, was proposed by Bollerslev, Engle and Wooldridge (1988). The VECH approach is essentially a 

direct generalization of the univariate approach, and as such requires a large amount of parameters 

                                                           
3 An example of this is the widely used Beta measure. 

4 Such persistence implies financial time-series data display periods of strong volatility clustering, or momentum, which is regarded by 

most as a stylized empirical fact. 

5 See e.g. Bollerslev’s (2008) Glossary to ARCH (GARCH) for a concise overview of the universe of GARCH model specifications. 

6 For a detailed account of the MV-GARCH literature, see Silbennoinen & Terasvirta (2008) and Bauwens, Laurent, & Rombouts (2006). 
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to be estimated as the returns dimension grows. Subsequent efforts to make the models more 

parsimonious yielded, amongst others, restricted versions of Engle & Kroner (1995)’s BEKK7-model, 

which also explicitly ensures positive definiteness of the covariance matrix, as well as the Constant 

Conditional Correlation (CCC) model and its subsequent variants. Engle (2002) later relaxed the 

constancy of the correlation structure of the CCC model with the Dynamic Conditional Correlation 

(DCC) version, while Cappiello et al., (2006) extended it to the Asymmetric-DCC (ADCC) model to 

allow for leverage effects in the underlying correlation structure. 

The main use in the literature of MV-GARCH techniques has been to investigate market spill-over 

and contagion effects, typically to illustrate the increased global interdependence of various asset 

classes across different financial markets. Interest in shock transmission studies initially followed the 

1987 stock market crash in the US, as researchers sought to uncover spill-over effects before and 

after the crash (c.f. King & Wadhwani (1990)and Schwert (1990)). Subsequent work on the topic built 

on and refined the methodology, with notable studies including, amongst others, Bekaert & Harvey 

(1995), Karolyi (1995), Kaminsky & Reinhart (1999). Koutmos & Booth (1995) notably studied the 

difference between positive and negative shock spill-overs emanating from significant news events 

and how it affects the volatility linkages between equity markets, while Lin, et al (1990) uncovered 

differences in the strength of transmission between global and local shocks. De Santis & Gérard 

(1998) then studied, with mixed findings, the benefit of utilizing such techniques for investment 

purposes8. 

Following the recent global financial crisis, there has again been a growing body of literature that 

study the magnified inter-linkages between asset return co-movement and volatility transmission 

across various markets using the MV-GARCH methodology. Several studies have included a 

composite South African index in their list of emerging economies (c.f. Christopher, et al (2012), and 

Beirne, et al (2009)), mostly to study global- and regional volatility spill-over effects from Europe. 

Horvath, et al (2011), e.g., study the conditional correlation between the main sectors of several 

large economies, including South Africa, using the BEKK MV-GARCH approach. Christopher, et al. 

(2012) also derives time-varying conditional correlations between aggregate stock and bond market 

indices using the BEKK MV-GARCH framework, utilising the dynamic structure of the correlations to 

study its long-term relation to sovereign credit ratings using Error Correction Models (ECMs).  

                                                           
7 The name is derived from the collaborative work of Baba, Engle, Kraft and Kroner on multivariate models. 

8 They found that the benefit is greatest for short term actively traded investment strategies as opposed to longer term oriented 

strategies.  
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Although the time-varying correlations between series can be extracted by using techniques that are 

direct generalizations of the univariate volatility models into the multivariate plane, such as the 

abovementioned studies that make use of the BEKK- and VECH-GARCH approaches, the main use of 

these models lie in studying volatility spill-over effects. As the focus in this paper will be specifically 

to extract the conditional correlations between the domestic sectors and study its dynamic 

structure, the more parsimonious DCC and ADCC MV-GARCH models will be used. These techniques 

are non-linear combinations of univariate GARCH models that use a two-step procedure to separate 

the covariance matrix into the individual univariate conditional variances and dynamic conditional 

correlation series.  

Corsetti, et al (2005) and Chiang & Li (2007) use DCC MV-GARCH models to show that herding 

behaviour amongst investors in emerging markets, during periods of economic uncertainty, can 

significantly affect developing countries’ capital market linkages with developed economies. 

Kalotychou, et al (2009) study inter-sector volatility correlations between Japan, the US and the UK 

markets, and emphasize the usefulness of studying the dynamics of asset return correlations for the 

purpose of portfolio allocation. They argue that there is substantial portfolio management benefits 

of not only timing volatility (as the multivariate model extensions of GARCH do), but also uncovering 

the dynamics underlying return correlations. Syriopoulos & Roumpis (2009) use the ADCC-MVGARCH 

techniques to investigate such dynamic correlations between the aggregate composite indices of 

Balkan and developed countries and convey similar sentiments from an emerging market investment 

perspective.  

Despite several MV-GARCH studies that include South Africa in a list of other countries (typically as 

part of a European group of economies), none to the knowledge of the author have focussed 

exclusively on the structure of dynamic conditional correlations between the main domestic sectors. 

In fact, studies on the South African equity market return volatility dynamics in general are limited. 

Notable examples include Collins & Biekpe (2005), who used adjusted Pearson’s correlation 

coefficients to study the contagion effects of the 1997 Asian crisis on stock markets in Africa, which 

included South Africa. Ogum (2001) used a time-varying MA-TGARCH model to study the variance 

structures of SA, Nigeria and Kenya for the period 1985 – 1998. Samouilhan (2006) finds evidence of 

market aggregate and sector level return and volatility linkages between SA and UK equity markets 

using univariate volatility models. Chinzara & Aziakpono (2009) study mean and volatility linkages 

between the South African stock market index and various other major global indices using VAR 

estimates and univariate GARCH techniques. Chinzara (2011) finds significant volatility spill-over 

effects of macroeconomic factors onto the monthly returns of the aggregate stock market index, and 
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four other main sectors, including the financial-, retail-, mining- and industrial sectors, using 

univariate GARCH techniques. He also finds that in periods of economic crisis (specifically using 

dummy variables for the Asian and global financial crises, respectively) these effects are intensified. 

Duncan & Kabundi (2011) study domestic volatility co-movements between currencies, bonds and 

equities in South Africa using a generalized autoregressive (GVAR) model. The dynamics of their 

analysis relies on rolling window regressions to provide a time-varying estimation in volatility 

transmissions between the main domestic asset classes.  

This study seeks to add to this literature by showing how international- and domestic 

macroeconomic uncertainty influence the dynamics of conditional co-movement between the 

largest domestic economic sectors9. This paper defines such periods of market uncertainty in terms 

of deviations from past aggregates of certain key macroeconomic variables available at daily 

frequencies. The paper therefore provides an interesting insight into the ability of domestic 

investors to hedge their portfolios by holding assets across the local equity market spectrum in 

different economic environments. 

Alternative multivariate volatility models that can also be used to construct similar time-varying 

variance-covariance series include the Orthogonal-GARCH, EWMA10 and Variance Sensitivity Analysis 

(VSA) models, which will, for the sake of brevity, not be discussed in this paper. Future research 

might conduct a sensitivity analysis of using these different approaches. 

3 Data 

The aim of this paper is to construct time-varying conditional correlations between sector pairs 

that reflect the co-movement of equities across the sector spectrum on an aggregate level in 

South Africa. The data set consists of the daily closing prices of the six largest industrial sector 

composite total return indices11. These sector indices are weighted by market capitalization and 

contain the majority of the equities within their respective economic groups. As such they 

accurately reflect the aggregate asset price behaviour of the firms within the sectors they track. 

Sector data was obtained from McGregor BFA and spans the period January 2 2002 to 30 April 

2013, primarily on the basis of data availability. In total, 2833 observations are included in this 

analysis. 

                                                           
9 Bekaert, et al (2005), Phylaktis & Xia, (2009) and  Hassan & Malik (2007) are notable examples of studies that investigate equity market 

correlations using MV-GARCH techniques at the sector level. 

10 This refers to the Exponentially Weighted Moving Average model that is widely used in practice. For details, see J.P. Morgan (1996)’s: 

RiskMetrics—A Technical Document. Reuters, NewYork 

11 Appendix A contains the complete list of sectors studied in this paper and their market capitalizations. 
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The continuously compounded daily sector returns are calculated by taking the log difference of 

each index series, as: 

       (
    

      
)      ( ) 

with      the closing price of the sector index, i, at time t. Taking the first differences of the series is 

motivated by the strong rejection of the Augmented Dickey Fuller Test and the Phillips-Perron tests 

for unit roots by all of the series included in the analysis12. The graphical representation of all the 

indices can be viewed on figure 2 in Appendix A.  

Table 1 below suggests that the sectors included show typical financial time-series behaviour 13. This 

is characterized by the excess kurtosis and skewness, resulting in the rejection of the Jacque-Bera 

normality statistic, and the approximate leptokurtic distributions14 common to financial time-series 

data. From the table we see that the Consumer Services (Basic Materials) sector displays the highest 

(lowest) unconditional mean returns, while the Telecommunications (Industrials) sector displays the 

largest (smallest) standard deviation of returns for the sample.  

Table 1: Summary of statistics for the continuously compounded sector returns 

       
       
 Financials Industrials 

Consumer 
Goods 

Consumer 
Services 

Tele-
communications 

Basic 
Materials 

       
       Mean 0.060124 0.070999 0.070094 0.096344 0.091743 0.041923 

Median 0.085273 0.092317 0.072886 0.126384 0.089410 0.071116 

Maximum 7.206517 6.984613 14.21184 6.407044 13.46480 11.16174 

Minimum -6.925194 -5.705644 -7.885916 -5.516482 -10.98621 -11.81173 

Std. Dev. 1.231430 1.103383 1.609253 1.108236 1.913693 1.802463 

Skewness -0.014504 -0.164490 0.260229 -0.210556 0.218625 -0.052178 

Kurtosis 6.059408 5.475949 7.697322 4.986533 6.336706 7.944201 

Jarque-Bera 1104.967 736.4089 2636.544 486.7625 1336.798 2886.829 

Probability (JB) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Observations 2833 2833 2833 2833 2833 2833 

Output is from Eviews 8. 

Each of the series also show significant serial autocorrelation remaining after differencing when 

considering the Ljung-Box Q statistics (see footnote 12 again), requiring autoregressive terms in the 

mean equations to be fitted15.  

As is clear from figure 3, all the series also display periods of volatility clustering, otherwise referred 

to as market momentum. This can be a strong indication of significant second order persistence 

                                                           
12 Details on the tests and tables showing the result are omitted for the sake of brevity. This can be requested from the author. 

13 C.f. Enders, W. (2008). Applied Econometric Time-Series, for a discussion on the stylized facts of financial time-series data. 

14 Such distributions have fat tails and display excess peaks at the mean. 

15 Mean persistence will be controlled for using first order AR-terms in the mean equations. 
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remaining in the series, pointing to conditionally heterogeneity requiring explicit modelling of the 

variance components. Ljung Box Q-Statistics on the squared residuals and the LM-GARCH test 

confirm the presence of conditional heterogeneity in all the series.  To control for this, Engle (1982) 

showed that it is possible to simultaneously model the mean and variance equations of a series using 

GARCH models, which will be further utilized to extract the time-varying conditional correlations in 

the next section. 

The next step would be to test whether the sector returns are all co-integrated in order to motivate 

the study of their conditional correlations. As all the series are non-stationary and integrated of 

order 1, the Johansen (1988) co-integration test will be used to confirm whether there is at least one 

linear long-run relationship among all the series that yield stationary residuals. The test uses a VECM 

approach of the form 

                                      ( )         ( ) 

where    is a (     ) vector of the index closing prices in the data set at time  . The Johansen test 

then centres around the examination of the  -matrix, with form       , where   is the    order 

cointegrating vector and   the adjustment parameter. The Trace and Maximum Eigenvalue tests 

below both consider the rank of the   matrix using its eigenvalues, which give an indication of long-

run dependence between the series. The Trace statistic tests whether the number of co-integrating 

vectors of the system is less than or equal to  , while the Max-Eigenvalue statistic reflects separate 

tests that were used on each eigenvalue of the  -matrix. If the tests indicate that the rank of   can 

be regarded as statistically likely to be between   and  , as compared to the MacKinnon-Haug-

Michelis (1999) critical values, it would imply that there is a long-run relationship between the series 

in the study. The findings from this test are summarized in concise form below across the different 

data trend possibilities. It clearly suggests that across several trend possibilities using both tests 

there exists at least one linear long-run co-integration relationship between the different sector 

indices included in the study. 

Table 2: Johansen Co-integration test for South African sectors 

      
Data Trend: None None Linear Linear Quadratic 

 No Intercept Intercept Intercept Intercept Intercept 

Test Type No Trend No Trend No Trend Trend Trend 

Trace 1 2 1 2 1 

Max-Eig 1 2 1 1 1 
 

Output is from Eviews 8.  Critical values based on MacKinnon-Haug-Michelis (1999) 
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Table 3 in the appendix gives the unconditional correlation of returns between the sectors in the 

study. Such static estimates of historic correlation between returns are often used in practice to 

guide diversification decisions. As seen above, though, all the series display significant first and 

second order serial autocorrelation, which make such static estimates misleading if the remaining 

mean persistence and conditional heteroskedasticity is left uncontrolled for. It also fails to take into 

account the dynamic nature of the underlying correlations, conditional upon past information, which 

will be studied in the next section. 

4 Methodology 

Consider the     stochastic vector, *  +  of continuously compounded daily returns of the major 

industrial sectors mentioned in the previous section. Assuming that the returns are demeaned and 

follows a conditionally heteroskedastic normal distribution as described above, the following 

notation is used: 

            ( ) 

    √                   (    )        (   ) (4) 

Here    is the unconditional AR(1)-mean equation with intercept,    the vector of ordinary residuals, 

   the     conditional covariance matrix and    the standardized residuals.  

Various MV-GARCH models have been proposed to model the covariance process,     in equation 

416, with this study using the class of DCC models that allow the separation of the covariance matrix 

into the separate univariate volatility equations and the conditional correlations. Bollerslev (1990) 

proposed the first class of MV-GARCH models to do this, the Constant Conditional Correlation (CCC)-

model. The CCC-model keeps the conditional correlations constant as the name suggests, thus 

making the conditional covariance matrix entries proportional to the product of the corresponding 

conditional standard deviations. This greatly simplifies the multivariate estimation procedure and 

significantly lowers the amount of parameters as compared to the VECH and BEKK techniques. These 

estimates provide better static correlation estimates than the unconditional estimates presented in 

table 2, as it controls for conditional heteroskedasticity present in all the series. 

The covariance matrix can then be defined as follows in the CCC-model: 

         (5) 

                                                           
16 C.f. Silbennoinen & Terasvirta (2008) for an in-depth discussion of the different types of models in the literature that measure   . 
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With        (√       √     )  and       taking the functional form of any univariate GARCH 

model.         is a positive definite symmetric matrix with ones on the diagonal. The conditional 

correlations are thus the off-diagonal entries in the  -matrix above, and are assumed to be constant 

over time. This study uses the GJR-GARCH (1,1,1) specification for the univariate conditional variance 

equations in    for the CCC-estimates, as all the series show significant threshold effects in their 

volatility equations17 (as discussed later). The bivariate CCC model’s covariance matrix,   , therefore 

takes the following form: 

                      [        ]                   (  ) 

                      [        ]                   (    ) 

         √                    (           ) 

(6) 

(7) 

(8) 

For notational purposes, let         denote the previous period’s squared residual series and       the 

univariate conditional variance equation of index  . The indicator variable  [        ]        , is the 

element by element Hadamard product of the residual series if        is negative, and takes value 

zero otherwise. The usual GARCH restrictions apply that ensure non-negativity of the variances, i.e. 

that ∑     
 
    ∑     

 
      and all the parameters are positive. These restrictions hold for all the 

univariate GJR-GARCH volatility equations in the study.  

For this dataset the CCC model estimates    parameters for all the sector pairs together. To 

conserve space, only the constant conditional correlation entries are included in table 4 in the 

appendix for each sector pair in the study. As regards the mean and variance equation parameter 

estimates from the CCC-MVGARCH(1,1) procedure, all the series display strong significance for all 

the estimated auto-regressive parameters. The sector returns series also display strong auto-

persistence in volatility as measured by       in equation 6 and 7. The Industrials sector shows the 

lowest conditional persistence in volatility of 0.89, with the largest being the Basic Materials sector 

with a volatility persistence parameter of 0.945. This is indicative of the local equity market being 

exposed to periods of significant asset price momentum for all the major sectors. 

Assuming that financial asset returns have constant conditional correlation processes has been 

shown in the literature to be an inaccurate assumption18. In response to this shortcoming Engle 

(2002) generalized the CCC model to allow correlations to vary over time by using a robust two-step 

procedure to isolate the dynamic conditional correlation process. The first step involves using 

                                                           
17 For simplicity, the threshold effects will be studied using only the GJR-specification for the CCC model above. 

18 C.f. Engle (2002)and Tse & Tsui (2002).  



12 
 

univariate volatility models to obtain GARCH-estimates of the respective series’ conditional 

variances in order to standardize the residuals as follows: 

           √      (9) 

In the second step, the standardized residuals are used to estimate time-varying conditional 

covariances. This implies that for Engle's (2002) DCC model the variance-covariance matrix 

mentioned earlier can be written as: 

          (  ) 

With    as defined in the CCC-model and    now being time-varying. The dynamic conditional 

correlation structure is then given by the following equation: 

      (       )  ̅    (            
 )    (       ) (  ) 

where       is the unconditional variance between series   and  ,  ̅ is the unconditional covariance 

between the series estimated in step 1 (using the univariate GARCH specifications) and the scalar 

parameters    and    are non-negative and satisfy        . The second step requires us to only 

estimate    and    using a likelihood function.  Note that equation 11 expresses the unconditional 

variance matrix,      , as a standard GARCH-type equation, so that we can derive the dynamic 

conditional correlation matrix,   , between the two series as: 

        
   

            
   

    (12) 

with      
  being a diagonal matrix with the square root of the diagonal elements of       as its 

entries, thus      
      (  )

   . The validity of this process can be thought of intuitively as 

multiplying both sides of equation 5 by the inverse of Diagonal matrix   
19  The dynamic conditional 

correlation matrix,       will therefore have entries in the bivariate framework as follows: 

      
     

√           

 

 
(        ) ̅                

           

((        )  ̅          
           )) ((        )  ̅          

           ))
 

(  ) 

Following the methodology of Engle (2002), the DCC model is estimated by maximizing the log-

likelihood function for equation 11 as: 

                                                           
19 The reader is referred to Engle (2002) for formal proofs. 
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 (   ) 20   
 

 
∑(  (  )    (|      |)    

 (      )
    )

 

   

 (  ) 

by using the fact that          , the above equation can be simplified as: 

 (   )   
 

 
  (  )  

 

 
 ∑(    |  |   

 (    )
    )

 

   

 
 

 
∑(  |  |    

 (  
  )  )

 

   

 (  ) 

The second step is then to maximize the correlation part by using the maximized value in 15 to solve: 

  (   )   
 

 
∑(  |  |    

 (  
  )  )

 

   

 (  ) 

The parameter estimates of the two-stage DCC estimation procedure outlined above is both 

consistent and asymptotically normal. According to Cappiello, et al. (2006) a clear limitation of this 

approach is that the dynamics of the conditional correlation do not account for asymmetric effects. 

This implies that although the model accounts for the magnitude of past shocks’ impact on future 

conditional volatility and correlation, it does not differentiate between positive and negative shock 

effects. To account for these potential asymmetries in the conditional correlations between series, 

the ADCC model was proposed by Cappiello, et al.(2006). In this model, equation 11 can be extended 

to incorporate asymmetries as follows: 

      (       )  ̅      
̅̅ ̅    (             )    (       )    (         ) (  ) 

 

where   
̅̅ ̅   [    ̅̅ ̅̅    

̅̅̅̅  ]21 and    
̅̅ ̅  ( ,   ̅̅̅̅   -     ̅̅̅̅ ), the latter being the element by element 

Hadamard product of the residuals if sector shocks are negative, and   ̅    otherwise. Thus the 

asymmetric term,  , captures periods where both markets experience bad news (negative shocks), 

making [       
 -    .  This study uses the diagonal version of the ADCC equation model, which is a 

special case of the Generalized ADCC (AG-DCC) model as the parameter matrices therein are 

replaced by scalars. In order to ensure that the       matrix has a unique solution, for each bi-variate 

case the determinant of the (     
   

            
   

) matrix will be tested for positive definiteness. 

These models are then estimated using quasi maximum-likelihood (QML) techniques based on the 

BHHH algorithm22. 

                                                           
20 Where   is the parameters in    and   the parameters in   . 

21 The sample analogue will be used for expectations throughout, implying that where indicated,    
̅̅ ̅   ,    

 -  
 

 
∑      

 
   . 

22 Berndt, Hall, Hall & Hausman iterative optimization algorithm (1974). 
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After specifying the most appropriate mean and variance equations (see appendix) and then fitting 

the dynamic conditional correlation series for each bi-variate relationship, the dynamic structure of 

each sector pair will be explored further. 

5 Results 

5.1 Asymmetry and Time-Variation in conditional correlations  

The first stage in building the DCC model framework consists of fitting the most appropriate 

univariate GARCH specifications to each series that best describes the return behaviour. Table 3 

below contains the chosen specification and parameter values of the best GARCH model for each 

series based on the Bayesian Information Criterion (SBIC), Akaike criterion (AIC) and the Log 

Likelihood criterion. The univariate GARCH models tested include the standard GARCH (Bollerslev, 

1986), GJR-GARCH (Glosten, Jagannathan and Runkle, 1993) and the EGARCH (Nelson, 1991) 

models23, of which the specification details are given below the table. 

Table 3: Univariate GARCH models 

Sector 
Model 

Selected 
                     

Basic Materials EGARCH 
0.036 

(0.159) 
0.058 

(0.003) 
-0.089 
(0.000) 

  
0.128 

(0.000) 
-0.053 
(0.000) 

0.987 
(0.000) 

Consumer 
Goods 

EGARCH 
0.086 

(0.000) 
-0.038 
(0.05) 

-0.085 
(0.000) 

  
0.121 

(0.000) 
-0.071 
(0.000) 

0.986 
(0.000) 

Consumer 
Services 

GJR-GARCH 
0.116 

(0.000) 
0.109 

(0.000) 
0.021 

(0.000) 
0.050 

(0.000) 
0.061 

(0.000) 
  

0.899 
(0.000) 

Financials GJR-GARCH 
0.067 

(0.004) 
0.045 

(0.018) 
0.022 

(0.000) 
0.049 

(0.000) 
0.079 

(0.000) 
  

0.895 
(0.000) 

Industrials GJR-GARCH 
0.085 

(0.000) 
0.059 

(0.002) 
0.035 

(0.000) 
0.051 

(0.000) 
0.077 

(0.000) 
  

0.878 
(0.000) 

Telecoms GJR-GARCH* 
0.10 

(0.001) 
0.019 

(0.298) 
0.064 

(0.000) 
  

0.054 
(0.000) 

0.038 
(0.000) 

0.908 
(0.000) 

 
Source: Author’s own calculations.  
 

This table shows the optimal univariate GARCH model and its parameter estimates for each index return series based on the AIC, SBIC and 

Log-likelihood criteria mentioned in the text. The p-values are indicated in parentheses. The parameter entries correspond to the GARCH 

model specifications provided below. Series with an asterisk (*) indicate that the AIC and SBIC indicated different optimal models, with the 

model then chosen with the highest Log-Likelihood (there was no case where all three indicated different optimal models).  

 

Univariate GARCH models used above include: 

Mean Equation:                    

Volatility Equation:     √  
      ,       (   ) 

                                                           
23 The DCC and ADCC models are relatively insensitive to the univariate model specification ((Cappiello, et al. 2006). Nonetheless, the best 

univariate GARCH model will be sought as its accuracy is vital in the second stage of the model fit.  
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GARCH(1,1) 24:              
         

GJR-GARCH(1,1):             
     ,      -     

         

EGARCH(1,1):    (  )      
|    |

√    
   

    

√    
      (    )  

 

It is interesting to note first that all the series display significant leverage effects in the conditional 

variance equations, requiring either GJR-GARCH or EGARCH models to be fitted. This implies that 

negative shocks tend to be followed by more volatility, on aggregate, than positive shocks of a 

similar magnitude. From the table above, the asymmetry parameters are measured by   for the 

GJR-GARCH model and    in the EGARCH model, respectively. This finding is consistent with Chinzara 

(2011), who also showed the presence of asymmetry in domestic sector returns. 

All the returns series also display strong persistence in volatility, as measured by (     ). This is 

indicative of the presence of volatility clustering, or market momentum, which is a common feature 

of financial returns series25. The statistical significance of all the parameters also indicate the strong 

presence of conditional heteroskedasticity in all the returns series in the study. This greatly 

undermines the accuracy of static measures of domestic asset return correlations across sectors. 

As mentioned in the methodology section, the second step is then to use the standardized residuals 

obtained from the estimated univariate models above to estimate the time-varying DCC and ADCC 

series by maximizing the log-likelihood functions mentioned before. This then provides us with 

estimates of the dynamic (time-varying) co-movements between sector returns, which will be 

studied in more detail in the next sub-section. 

Figure 1 and 2 below show the bivariate conditional correlation graphs for each of the sector pairs 

using the DCC and ADCC MV-GARCH model estimations, respectively. It is interesting to note the 

heterogeneity in the dynamics of correlations between the sector pairs, showing that static 

estimates of co-movement can at times be misleading. Interesting to note from the figures too is 

that there is no clearly consistent increase or decrease in co-movements during the Global Financial 

Crisis (GFC) period that is shaded in the graphs. From the graphs below we also see that the DCC 

estimates vary more than the ADCC estimates, with both models producing similar mean levels for 

the conditional correlation (the exact values can be seen in tables 4 and 5 below).

                                                           
24Because of the numerical difficulty in estimating multivariate GARCH models, Silbennoinen & Terasvirta (2008) suggest the lag structure 

should be        for the univariate volatility model specifications, as used above.  

25 Cf.Koutmos & Booth (1995), Ogum (2001) and Chinzara (2011). 
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Figure 1  DCC-MVGARCH graphs 

Shaded area is the Global Financial Crisis period. All the graphs below are similarly scaled between zero and one. 
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Figure 2  ADCC-MVGARCH graphs 

Shaded area is the Global Financial Crisis period. All the graphs below are similarly scaled between zero and one. 
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The DCC-MVGARCH log-likelihood parameter estimates are summarized in table 4 below. The 

parameters measure the impact of past standardized shocks (  ) and lagged dynamic conditional 

correlations (  ) respectively on the current dynamic conditional correlations. The table suggests 

that the conditional correlations all show significant variations over time, as all the bivariate 

combinations have highly significant    and    parameters that are greater than zero. The necessary 

condition of         holds for all sector pairs, while the sum of the parameters is close to unity 

in each case. This suggests that the DCC model is adequate both at measuring time-varying 

conditional correlations, in that it displays mean reversion along a constant level, and controlling for 

the high degree of persistence in conditional volatility for all pairs of sectors in the study.  

Table 5 on the next page shows the ADCC parameter estimates. Note the mean conditional 

correlations of both the DCC and ADCC series are very similar to each other and to the CCC model 

estimates in table 11 in the appendix. The mean level of correlation for nearly all the conditional 

estimates, however, differs significantly from the unconditional (static) correlations for most sector 

pairs, which again highlights the inaccuracy of assuming static inter-sectoral correlations between 

local assets.  

Table 4: DCC MV-GARCH(1,1) parameter estimates 

Sectors 
Financials Industrials 

Consumer 
Goods 

Cons 
Services 

Telecoms 

                               

Industrials 
 

Mean, variance of    

0.0298 
(0.000) 

0.964 
(0.000) 

        

   
       

           
    

Consumer Goods 
 

Mean, variance of    

0.038 
(0.000) 

0.952 
(0.000) 

0.026 
(0.000) 

0.967 
(0.000) 

      

   
      

           

   
       

          
   

Consumer Services 
 

Mean, variance of    

0.034 
(0.000) 

0.934 
(0.000) 

0.034 
(0.000) 

0.943 
(0.000) 

0.019 
(0.000) 

0.971 
(0.000) 

    

   
       

          

   
       

           

   
̅̅ ̅̅        

           
  

Telecoms 
 

Mean, variance of    

0.035 
(0.000) 

0.942 
(0.000) 

0.044 
(0.000) 

0.927 
(0.000) 

0.031 
(0.000) 

0.951 
(0.000) 

0.040 
(0.000) 

0.908 
(0.000) 

  

   
       

          

   
       

           

   
̅̅ ̅̅        

          

   
       

           
 

Basic Materials 
 

Mean, variance of    

0.031 
(0.000) 

0.959 
(0.000) 

0.032 
(0.000) 

0.956 
(0.000) 

0.0295 
(0.000) 

0.964 
(0.000) 

0.029 
(0.000) 

0.954 
(0.000) 

0.031 
(0.000) 

0.939 
(0.000) 

   
       

          

   
      

          

   
̅̅ ̅̅       

          

   
      

          

   
      

          

 
Source: Author’s own calculations.  
 
This table summarizes the estimated coefficients from the DCC-MV-GARCH model in a bivariate framework for all sector pairs in the study. 

The parameter values and p-values in parenthesis are reported. The log-likelihood was estimated using the Marquardt ML-technique. The 

first two moments (   
    

 ) of the dynamic conditional correlations between the series are given below the parameter values. 
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Table 5: ADCC MV-GARCH(1,1) parameter estimates 

Sectors Financials Industrials Consumer Goods Cons Services Telecoms 

                                         

Industrials 
Mean, 

variance of    

0.135 
(0.000) 

0.981 
(0.000) 

0.021 
(0.000) 

            

   
                             

Consumer 
Goods 

Mean, 
variance of    

0.097 
(0.000) 

0.982 
(0.000) 

0.062 
(0.000) 

0.096 
(0.000) 

0.0985 
(0.000) 

0.061 
(0.000) 

         

   
                    

                           

Consumer 
Services 

Mean, 
variance of    

0.135* 
(0.000) 

0.9963* 
(0.000) 

-0.002* 
(0.999) 

0.130 
(0.000) 

0.972 
(0.000) 

0.04 
(0.000) 

0.137 
(0.000) 

0.981 
(0.000) 

0.014 
(0.000) 

      

   
                     

                     
                        

Telecoms 
Mean, 

variance of    

0.123 
(0.000) 

0.977 
(0.000) 

0.054 
(0.000) 

0.129 
(0.000) 

0.977 
(0.000) 

0.057 
(0.000) 

0.105 
(0.000) 

0.982 
(0.000) 

0.075 
(0.000) 

0.128 
(0.000) 

0.975 
(0.000) 

0.041 
(0.000) 

   

   
                     

                     
                     

                     

Basic 
Materials 

Mean, 
variance of    

0.134 
(0.000) 

0.977 
(0.000) 

0.036 
(0.000) 

0.135 
(0.000) 

0.981 
(0.000) 

0.024 
(0.000) 

0.132 
(0.000) 

0.983 
(0.000) 

0.025 
(0.000) 

0.144 
(0.000) 

0.973 
(0.000) 

0.021 
(0.000) 

0.147 
(0.000) 

0.970 
(0.000) 

0.031 
(0.03) 

   
                     

                     
                     

                     
                   

 

Source: Author’s own calculations 

This table summarizes the estimated coefficients from the Asymmetric DCC-MV-GARCH model in a bivariate framework for all sector pairs in the study. The parameter values and p-values 

in parenthesis are reported. The log-likelihood was estimated using the BHHH ML-algorithm.  

*Note: The Financials and Consumer Services Pair,  had a non-zero det(QQQ) and as such cannot ensure that the conditional variance is positive. The first two moments (mean and standard 

deviation) of the dynamic conditional correlations between the series are given below the parameter values. 
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From table 5, we see that by introducing the parameter  , each sector pair displays a significantly 

positive impact on the strength of co-movement following negative returns to both series. This 

implies that periods of negative market momentum tend to reinforce co-movement between asset 

returns. It is also clear from the tables above that the ADCC estimates are centred more closely to 

the mean correlation levels as viewed by the lower standard deviations.  

As the ADCC model nests both the DCC (   ) and the CCC (         ), we can compare 

the goodness of fit between the series using the Log-Likelihood statistics. Doing so, the ADCC model 

significantly outperforms the other two models in terms of a higher Log-Likelihood and lower AIC 

and SBIC statistics for all the sector pairs26. As such we can deduce that sector returns in this study 

display significant asymmetry and time-variation in its conditional correlations. 

 

5.2 Studying the dynamics of the conditional correlations  

In this subsection we explore the time-varying characteristics of the conditional correlations 

extracted in the previous section to understand how co-movements between sectors respond to 

changes in the macroeconomic environment. It is important to note, firstly, that all the DCC and 

ADCC series are highly persistent27, yet do not reject the standard unit root tests. Such very high 

persistence could cause spurious results if left unchecked. As such, this paper follows Christopher, et 

al. (2012) in using the differenced series of each pair to explain its dynamics relative to changes in 

key exogenous factors. This paper, however, does not attempt to establish a long-run cointegrating 

relationship in order to formulate an Error Correction Model (ECM), as doing so on such high 

frequency co-movements seem untenable28.  

The estimated differenced equations do, however, include mean reversion elements in terms of its 

respective long-run mean levels. This is estimated by including the difference between the DCC and 

ADCC series levels with their long-run mean values,               
̅̅ ̅̅ , into the difference equation 

in order to establish whether deviations from this long-run mean is significant in driving changes in 

the short run co-movements. A negative parameter would suggest an opposite sign change in the 

next period’s co-movement in response to the level of deviation from the long-run mean. This can 

then be interpreted as mean-reversion to the unconditional correlation following a deviation. 

                                                           
26 These statistics are not included for the sake of brevity, but is available upon request from the author. 

27 The AR-terms of the DCC and ADCC series are nearly all above     . 

28 Christopher, et al. (2012) fit an ECM using credit ratings and macroeconomic outlook indicators. 
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The differenced equations will also include several variables that estimate how the co-movements 

between sectors respond to changes in the macroeconomic environment. As such information is 

limited at daily frequencies, proxies will be used to measure the impact of daily fluctuations in 

market sentiment on the DCC and ADCC estimates of each sector pair.  

The variables included in the differenced equations below are firstly the Chicago Board Options 

Exchange (CBOE) Volatility index (VIX), used as a proxy for global market uncertainty. Its inclusion is 

motivated by Connolly, et al (2005), who argue that increased uncertainty, as proxied for by an 

increase in the    , should raise the asset correlations between assets across sectors. Lags for this 

variable will be used as its information should only be fully absorbed in the domestic market with a 

one period delay, considering the time gap between South Africa and the US. The JSE All-Share Index 

(ALSI) will be used as a proxy for domestic asset market conditions, while the 10 year All Bond Index 

TRI closing value (    ) will be used as a measure of macroeconomic stability. Both these series 

reject the ADF test for stationarity29, and as such require first differencing. We also look at the 

impact of the rand / dollar exchange volatility30,      , as measured by the squared difference of 

the exchange rate. As suggested by Bracker, et al (1999), we expect increased       to dampen 

inter-sector conditional correlation.  

In order to capture the impact that broad market sentiment would have on the aggregate 

conditional correlations between the sectors, several indicator variables will be included in a level 

regression of the DCC and ADCC estimates. Syllignakis & Kouretas (2011) regressed their level DCC 

estimates on indicator variables that represent crisis periods, in order to test the impact such 

periods have on the aggregate correlations between Eastern European stock indices. In contrast, this 

study makes use of indicators that track significant changes in key macroeconomic variables as 

opposed to controlling for whole periods. This is done in order to isolate changes in implied market 

sentiment patterns in a more dynamic way. The first such variable is the         indicator that is 

used to proxy for periods of high global market uncertainty. This is measured by     being larger 

than 3031. The         and         variables correspond to periods where the      and the      

dip below their respective 120 day Moving Average (MA)32. Using such indicators, which provide 

richer information in terms of changes in the sentiment, is important as the DCC and ADCC estimates 

are themselves dynamic. 

                                                           
29 The statistics are not included for the sake of brevity, but is available upon request. 

30 The Rand / Dollar exchange is used as opposed to an aggregated exchange rate basket, as the former is observable in real time to all 

market participants and therefore is a better proxy for market perceptions on the daily rand exchange value. 

31 This is widely accepted as a high level of market uncertainty. 

32 Excluding weekends, this represents the 6 month MA. The results are also robust for different periods of MA. 
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The following differenced equation form will be used to achieve the first of the above stated goals: 

          (    )        (  )          (  )         (    )         (    ) (  ) 

with       the DCC or ADCC series for the sector pair (   ), and               
̅̅ ̅̅   the deviation from 

the long-run mean conditional correlation. The following equations will then be used to evaluate 

whether market sentiment, globally and domestically, matter for the level of sector co-movements: 

                                          (19) 

The parameters are then fitted using OLS techniques. The first equation’s estimated coefficients will 

thus show how sensitive the aggregate strength of correlation between each sector pair is relative to 

changes in each variable included, ceteris paribus, conditional upon past information. The second 

equation’s coefficients estimate changes in the aggregate level of daily co-movement between 

sector pairs conditional upon experiencing deterioration in market sentiment as outlined above. The 

results for each of the sector pair differenced regressions are summarized in tables 6 and 7 below, 

while the level regression results are summarized in tables 8 and 9 for the DCC and ADCC 

techniques, respectively. 

From the differenced equations in table 6 and 7 we see that there is significant mean reversion in all 

the sector pairs from the negative parameter values of    Also, an increase in the     index 

significantly positively impacts all the sector pair co-movements, although the size of the impact is 

limited in all cases. Currency volatility negatively impacts most of the sector pair co-movements, 

although for most pairs this effect is not statistically significant. This could be interpreted as currency 

volatility having similar impacts on sector returns on aggregate, so as not to change relative co-

movements33, which is an interesting finding.  

The     (    ) parameter is significant and negative for all the sector pairs, showing that an 

increase in the returns of the asset market as a whole leads to reduced co-movement between 

sectors. This is consistent with numerous other findings in the literature suggesting that during 

market upswings asset prices across sectors tend to reflect their fundamentals more closely. 

Surprisingly, the     (    ) parameter suggests that increased domestic market stability increases 

the inter-sector asset co-movement, on aggregate, in all cases. The significance of this effect largely 

diminishes when taking into account return asymmetry in the ADCC model. A potential explanation 

of this might be that investors shift some part of their equity portfolio into fixed return instruments 

                                                           
33 Exceptions in this regard are the Consumer Goods-, Consumer Services- and the Basic Materials sectors. 
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when bond prices adjust upward, leading to a slight homogenization (although mostly not 

significant) in the returns of assets across sectors. 

Table 6: DCC Differenced Regression output: 

Sector pairs c               

Fin & Ind -0.002** -0.015*** 0.000*** -0.014 -0.114*** -0.016 

Fin & Cons G -0.003** -0.019*** 0.000** -0.042** -0.188*** 0.404*** 

Fin & Cons S -0.002** -0.042*** 0.000** -0.013 -0.088*** 0.093 

Fin & Telecom -0.003*** -0.028*** 0.000** -0.002 -0.107*** 0.177 

Fin & Basic M -0.003*** -0.015*** 0.000*** -0.041*** -0.130*** 0.235** 

       

Ind & Cons G -0.003*** -0.012*** 0.000*** -0.014 -0.159*** 0.271*** 

Ind & Cons S -0.003*** -0.035*** 0.000*** -0.013 -0.111*** 0.070 

Ind & Telecom -0.005*** -0.041*** 0.000*** 0.000 -0.146*** 0.308* 

Ind & Basic M -0.004*** -0.022*** 0.000*** -0.021 -0.180*** 0.382*** 

       

Cons G & Cons S -0.002** -0.014*** 0.000*** -0.023** -0.099*** 0.183** 

Cons G & Telecom -0.003** -0.023*** 0.000** -0.009 -0.126*** 0.138 

Cons G & Basic M -0.003*** -0.018*** 0.000*** 0.005 -0.176*** 0.053 

       

Cons S & Telecom -0.002 -0.055*** 0.000* 0.000 -0.087*** 0.262 

Cons S & Basic M -0.004*** -0.025*** 0.000*** -0.029** -0.166*** 0.342*** 

       

Telecom & Basic M -0.004*** -0.037*** 0.000*** -0.023 -0.119*** 0.239* 
 

Table 7:  ADCC Differenced Regression output: 

Sector pairs c               

Fin & Ind -0.001** -0.015*** 0.000** -0.005 -0.079*** 0.047 

Fin & Cons G 0.000 -0.014*** 0.000 -0.012 -0.157*** 0.067 

Fin & Cons S -0.001** -0.047*** 0.000*** -0.008 -0.048*** 0.066 

Fin & Telecom -0.001** -0.023*** 0.000** -0.002 -0.093*** 0.106 

Fin & Basic M -0.002** -0.017*** 0.000*** -0.022** -0.103*** 0.151* 

       

Ind & Cons G -0.001** -0.013*** 0.000** -0.010 -0.171*** 0.086 

Ind & Cons S -0.002** -0.031*** 0.000*** -0.006 -0.089*** 0.087 

Ind & Telecom -0.002** -0.024*** 0.000** 0.000 -0.126*** 0.098 

Ind & Basic M -0.003*** -0.017*** 0.000*** -0.012 -0.122*** 0.195** 

       

Cons G & Cons S -0.002** -0.019*** 0.000*** -0.021** -0.095*** 0.113 

Cons G & Telecom -0.001 -0.015*** 0.000 0.006 -0.201*** 0.112 

Cons G & Basic M -0.002** -0.016*** 0.000** 0.003 -0.121*** 0.064 

       

Cons S & Telecom -0.001 -0.027*** 0.000 0.001 -0.064*** 0.093 

Cons S & Basic M -0.003*** -0.030*** 0.000*** -0.020* -0.134*** 0.261** 

       

Telecom & Basic M -0.003*** -0.034*** 0.000*** -0.014 -0.101*** 0.177* 

 
Source: Author’s own calculations.  
Table 3 and 4 above show the parameter estimates for the following differenced regression outputs: 

           (    )        (  )          (  )         (    )         (    ) 

Here       is the dynamic conditional correlation series as measured by the DCC- and ADCC-GARCH techniques respectively.  

Note: ***, **, * denote statistical significance at the 1%, 5% and 10% level respectively. 
The    statistics for all the regressions are very low and indicate that there still remains many factors that need to be considered when 
accurately evaluating the movements of these series. As forecasting the movements are not the focus of this paper, it will not be explored 
in greater detail. The    and any other goodness of fit statistics can be requested from the author. 
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Table 8:   DCC Level Regression output:   Table 9:   ADCC Level Regression outputs: 

 

 

 
Source: Author’s own calculations.  
Table 5 and 6 above show the parameter estimates for the following level regression outputs: 

                                           

Here       is the dynamic conditional correlation series as measured by the DCC- and ADCC-GARCH techniques respectively.  

Note: ***, **, * denote statistical significance at the 1%, 5% and 10% level respectively. 
 

The level equations given in tables 8 and 9 show strong significance for nearly all the indicator 

variables included. It shows firstly that for all sector pairs periods of increased global economic 

uncertainty raises the aggregate level of inter-sectoral asset price co-movement by approximately 

   . Its impact, however, is dampened in all cases when controlling for asymmetries in sector 

returns, showing then an increased level of co-movement on aggregate for the ADCC series of   . 

Periods of domestic market uncertainty, as proxied for by        , show inter-sector co-movement 

increase by on aggregate      for the DCC and    for the ADCC model estimates. Periods of 

negative domestic asset market sentiment, as proxied for by        , raises inter-sector co-

movement by      and      on average for the DCC and ADCC pairs, respectively.  

In summary, the results underline the need for investors to consider local and global economic 

conditions and levels of uncertainty when evaluating the benefits to local cross-sector 

diversification. Asset returns across domestic sectors tend to correlate more in periods of market 

uncertainty and overall asset market contraction, while negative return shocks to both sectors 

typically lead to higher conditional correlations between the pairs in subsequent periods (as 

indicated by the significant and positive parameter estimate  , in table 11). As such, the benefits to 

diversifying across local sectors diminish at exactly the time they are hoped by fund managers to be 

safeguarding the portfolio from potential losses. 

Sector pairs c          

Fin & Ind 0.634*** 0.111*** 0.059*** 0.032*** 

Fin & Cons G 0.497*** 0.040*** 0.079*** 0.107*** 

Fin & Cons S 0.628*** 0.044*** 0.019*** 0.034*** 

Fin & Telecom 0.471*** 0.085*** 0.045*** 0.081*** 

Fin & Basic M 0.507*** 0.101*** 0.028*** -0.004 

     

Ind & Cons G 0.398*** 0.136*** 0.092*** 0.092*** 

Ind & Cons S 0.595*** 0.084*** 0.032*** 0.043*** 

Ind & Telecom 0.397*** 0.150*** 0.053*** 0.083*** 

Ind & Basic M 0.456*** 0.164*** 0.021*** 0.019*** 

     

Cons G & Cons S 0.381*** 0.088*** 0.039*** 0.073*** 

Cons G & Telecom 0.282*** 0.087*** 0.053*** 0.097*** 

Cons G & Basic M 0.458*** 0.144*** 0.069*** 0.000 

     

Cons S & Telecom 0.440*** 0.055*** 0.033*** 0.074*** 

Cons S & Basic M 0.417*** 0.098*** 0.010* 0.038*** 

     

Telecom & Basic M 0.290*** 0.101*** 0.028*** 0.052*** 

Sector pairs c          

Fin & Ind 0.644*** 0.069*** 0.038*** 0.024*** 

Fin & Cons G 0.518*** 0.016*** 0.031*** 0.053*** 

Fin & Cons S 0.636*** 0.021*** 0.009*** 0.017*** 

Fin & Telecom 0.483*** 0.062*** 0.036*** 0.049*** 

Fin & Basic M 0.510*** 0.058*** 0.019*** -0.002 

     

Ind & Cons G 0.412*** 0.070*** 0.043*** 0.075*** 

Ind & Cons S 0.604*** 0.050*** 0.023*** 0.026*** 

Ind & Telecom 0.412*** 0.108*** 0.049*** 0.044*** 

Ind & Basic M 0.462*** 0.113*** 0.016*** 0.012*** 

     

Cons G & Cons S 0.386*** 0.062*** 0.029*** 0.068*** 

Cons G & Telecom 0.291*** 0.065*** 0.056*** 0.060*** 

Cons G & Basic M 0.464*** 0.097*** 0.045*** 0.001 

     

Cons S & Telecom 0.446*** 0.055*** 0.033*** 0.049*** 

Cons S & Basic M 0.422*** 0.066*** 0.009** 0.030*** 

     

Telecom & Basic M 0.297*** 0.078*** 0.023*** 0.038*** 
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Some care needs to be taken, however, in interpreting the findings from using these parametric 

volatility models. The strong assumption of normality in the innovations, e.g., is rejected in most 

financial time-series analyses34. This can lead to inaccurate measures, as the dynamic structure of 

the conditional correlations is a function of past returns. The problem of non-normality, however, is 

limited due to the high frequency of the data and the use of log-likelihood estimation techniques35. 

Another potential pitfall to this approach, as suggested by Silbennoinen & Terasvirta (2008), is that 

the long-run correlation between a pair of series is highly dependent on dynamic macroeconomic 

factors, responding to such factors in a non-constant way. Nonetheless, the findings are useful in 

providing an efficient means of studying changes in underlying dynamics of the co-movements 

between asset returns, and present a significant improvement on the static correlation estimates 

used more widely in practice. A future avenue of research will be to broaden this study to include 

foreign sectors and individual asset classes too. 

6 Conclusion 

The last few years has shown periods of intensified co-movement of asset prices separated across 

country- and sector borders. This has brought into question the extent to which portfolios that are 

diversified across local sectors shelter investors from periods of global and domestic asset return 

homogeneity. This paper studies the co-movements between the main economic sectors in South 

Africa in a dynamic framework, providing a means of differentiating between factors that influence 

the strength of co-movement over time. 

Using DCC and ADCC MV-GARCH techniques, the time-varying conditional correlations are extracted 

from the variance component, to provide an estimate of dynamic sector co-movements over time. 

These series are then used in both differenced- and level regressions to study which factors 

influence the dynamics and the level of co-movement between domestic economic sectors over 

time. Changes in market uncertainty and -sentiment are proxied for by using indicators that 

represent periods where key indices deviate from past trends. As DCC and ADCC estimates are 

dynamic, it is necessary to include similarly dynamic indicators into the analysis. These indicators 

better represent changes in market conditions than, e.g., using a global financial crisis dummy.  

The results show that global and domestic economic uncertainty, as well as local asset market 

sentiment, significantly influence both the short run dynamics and the aggregate level of co-

                                                           
34 This assumption is also rejected for all the sector returns in this study. The problem of non-normality is, however, a general financial 

time-series problem. 

35 High frequency financial time-series data is often considered lognormal asymptotically. 
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movement between local sector pairs. In particular, the results suggest that fund managers and 

investors should consider macroeconomic forecasts and expectations of market sentiment when 

evaluating the benefits in terms of diversifying domestic portfolios  

The techniques used in this study are unique in its application to South African sectors. An avenue 

for future research will be to use these multivariate GARCH techniques to explain the conditional 

correlation dynamics between the South African sectors and its foreign counterparts. 
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Appendix A 

Sectors included in the study: 

Sector Ticker Market Cap (R Million)* 

Financial Sector (Financials) J580 1 550 000 

Industrial Sector (Industrials) J520 400 000 

Consumer Goods Sector (Cons G) J530 2 390 000 

Consumer Services Sector (Cons S) J550 658 000 

Telecommunications Sector (Telecoms) J560 476 000 

Basic Materials Sector (Basic M) J510 1 590 000 
 

*As at 30 April 2013. Data obtained from McGregor BFA.   

  

Figure 3 Continuously compounded sector returns:         (
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Table 10:  Unconditional correlations between South African economic sectors 

Sectors Financials Industrials 
Consumer 

Goods 
Consumer 
Services 

Tele-
communications 

Industrials 
0.708     

Consumer 
Goods 

0.532 0.463    

Consumer 
Services 

0.683 0.682 0.414   

Tele-
communications 

0.568 0.513 0.338 0.520  

Basic Materials 
0.537 0.543 0.472 0.481 0.378 

 
Source: Author’s own calculations.  
This table summarizes the unconditional correlation estimates between the sector returns included in this study. 

 

Table 11:  Constant Conditional Correlations between South African economic sectors using 
CCC-Model estimates 

Sectors Financials Industrials 
Consumer 

Goods 
Consumer 
Services 

Tele-
communications 

Industrials 
0.672     

Consumer 
Goods 

0.542 0.448    

Consumer 
Services 

0.653 0.631 0.415   

Tele-
communications 

0.517 0.453 0.325 0.478  

Basic Materials 
0.520 0.479 0.480 0.440 0.326 

 

Source: Author’s own calculations.  
 

This table summarizes the conditional correlation estimates between the sector returns included in this study using the CCC-MVGARCH 

approach. The estimates above correspond to the off-diagonal entries of the     matrix described in equation 5 in the text. The parameter 

estimates are all highly significant in the estimation outputs. 
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