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ABSTRACT 

 
 

 

 Earnings functions form the basis of numerous labour market analyses. Non-

response (particularly among higher earners) may, however, lead to the exclusion of a 

significant proportion of South Africa’s earnings base. Earnings brackets have been built 

into surveys to maintain sufficient response rates, but also to capture information from 

those who are unsure about the earnings of fellow household members. This data type 

gives a rough indication of where the respondent lies in the income distribution, however 

exact figures are not available for estimation purposes. To overcome the mixed 

categorical and point nature of the dependent variable, researchers have traditionally 

applied midpoints to bracket earnings. Is this method too rudimentary? It is important to 

establish whether the brackets are too broad in South African Household surveys to be 

able to make reliable inferences. Here, midpoints are imputed to interval-coded 

responses alongside theoretical conditional means from the Pareto and lognormal 

distributions. The interval regression is implemented as a basis case, as it soundly 

incorporates point and bracket data in its likelihood function. Monte-Carlo simulation 

evidence suggests that interval regressions are least sensitive to bracket size, however 

midpoint imputation suffers distortions once brackets are too broad. Coefficient 

differences are investigated to distinguish similar from different results given the chosen 

remedy, and to establish whether midpoint imputations are credibly similar to applying 

interval regressions. To this end, testing procedures require adjustment, with due 

consideration of the heteroskedasticity introduced by Heckman 2-step estimates. 

Bootstrapping enhances conclusions, which shows that coefficients are virtually invariant 

to the proposed methods. Given that the bracket structure of South African Household 

Surveys has remained largely unchanged, midpoints can be applied without introducing 

coefficient bias. 

 

JEL codes: C15, C24, C42, J01, C81
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1 Introduction 

The analysis of earnings data in South Africa introduces economists to many insightful 

conclusions about the structure of the labour market. In the process, however, researchers 

encounter a number of methodological obstacles, which are data-driven and not directly related 

to sound economic interpretation. While many respondents in surveys supply useful figures, 

many others (particularly in higher income groups) are hesitant to divulge their financial 

positions. Misreporting and underreporting abound. Survey designers have offered the first step 

in the solution, by building “income bracket options” into questionnaires. Respondents who are 

unwilling to provide exact amounts are allowed a certain degree of anonymity by being afforded 

the option to indicate which income band they fall into. This leaves the completion of the task to 

econometricians, who have to find techniques to maximise information from a mixture of 

categorical and nominal data. Adler et al (1998: ix) label it “bad data”, simply because researchers 

are not always certain how to analyse such unfamiliar information, particularly in its role as a 

dependent variable. While it is not the econometrician's task to improve the purity of datasets, it 

is imperative that sound methods are confirmed and implemented correctly to maximise the 

“true” information which is extractable. 

 

This study engages both intuitive (applying midpoints) and theory based data simulation 

(conditional mean imputation from various distributions) for the dependent variable in earnings 

functions. These variants are compared to interval regressions to introduce a sense of surety that 

results which are obtained are indeed similar, regardless of the complexity of the entire process - 

from household responses to economic conclusions. The latter technique’s mechanics are 

designed to handle coarsened data.  

 

A further target for improved accuracy is the reliability of standard errors reported within the 

Heckman framework. While addressing non-random sample selection (to account for omitted 

variable bias in earnings equations), impure variance-covariance structures are introduced, which 

demand attention. Are asymptotic corrections valid, or is it necessary to implement the 

bootstrap? If resulting confidence intervals are too broad, too many values are regarded to be 

admissible; overprecision may similarly lead to non-rejection of invalid hypotheses (Brownstone & 

Valetta, 2001: 129). This is of particular relevance to testing procedures when the proposed 

methods are compared.  
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The object of this study is therefore to uncover some of the pitfalls encountered in labour market 

analyses. How do traditional methods compare to new innovations? How does one embark on a 

process of sifting good information from bad information with complex data? Conclusions are 

inherently linked to the quality of the chosen data (for this study, the Labour Force Survey, 

September 2003), but the manner in which they are reached should not be subject to these 

limitations. How different are the tools researchers have at their disposal? 

  

The rest of this paper is structured as follows: Section 2 motivates the need for interval-coding 

innovations in questionnaires, while Section 3 outlines accompanying econometric problems 

related to sample selection bias. Section 4 addresses various methods to overcome the limitations 

of the dependent variable. Section 5 applies the earnings function literature to the chosen 

specification, while Section 6 reports the findings of this study. Section 7 concludes.  

 

2 Why Bracket Earnings? 
 

Keswell and Poswell (2004: 855) highlight the need to utilise more than just reported point 

income data to avoid biased estimation. In many cases the data generating process (DGP) of this 

group of respondents appears to be different to a simulated lognormal theoretical benchmark. In 

South Africa, the proportion of reporting decreases as survey years progress, hence the need 

arises to capture additional information via bracket earnings questions. Respondents reluctant to 

provide exact income details are presented with the alternative to respond within a category (see 

Table 1).  The way this information is processed is therefore of utmost importance: 

econometricians no longer have a continuous variable at their disposal, and can therefore not 

apply well-grounded techniques such as OLS. Classical remedial measures include the imputation 

of midpoints to interval-coded observations, however Keswell and Poswell (2004: 855) show that 

this too generally  leads to significant differences, when the resultant distribution is compared to 

the shape of theoretical distributions. 

 

This problem is prominent in later surveys, where underreporting is more prevalent. Midpoint 

imputations introduce substantial differences from the implied DGP, bar for the 1997 October 

Household Survey (OHS97) (Keswell & Poswell, 2004: 855). The sole use of point data or the 

validity of imputations in later surveys should always be questioned. Any earnings study should 

commence with the comparison of DGP’s to theory, in order to establish whether the proposed 

variant of the dependent variable satisfies the above considerations. 
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2.1 Which methods have previous studies implemented? 

 

How then does one overcome biases, and are there cases where midpoints are in fact useful 

indicators of categorical earnings? 

 

Rospabé (2002) and Daniels & Rospabé (2005) capitalise on the innovative “interval regression” 

to overcome the need to choose between simulation and midpoint imputation. This procedure 

rests on maximum likelihood estimation within a generalised Tobit model. It therefore bridges 

the gap from point data to the maximum information provided by respondents, by incorporating 

interval-coded information into the likelihood function.  

 

Hofmeyr (1999: 8) implements the midpoint method, without imputing a value to the open 

category. This choice is justified by the fact that brackets are not wide.  The 1999 October 

Household Survey (OHS99) was studied, which Keswell and Poswell (2004: 855) claim to be 

plagued by biased results following the application of midpoints.  

 

Work based on earlier surveys, such as the 1993 Project for Statistics on Living Standards and 

Development (PSLSD) (Mwabu & Schultz, 2000), OHS 1994 (Winter, 1999) and OHS 1995 

(Bhorat & Leibbrandt, 2001), does not mention methods implemented to deal with categorical 

reporting. This may be indicative of sufficient point responses in initial surveys, but also of an 

uncontroversial implementation of the midpoint methodology. 
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2.2 The Data Divide 

Table 1  LFS September 2003 - Summary of  Earnings Data (Employed Respondents) 

Type of Earnings Data    
INTERVAL-

CODED 
RESPONSES 

POINT 
RESPONSES 

NO EARNINGS DATA 
REPORTED 

Earnings Range as per LFS 
bracket question (in Rands) Frequency Percent Frequency Percent Frequency 

0 726 10.58%       

0-199 280 4.08% 745 4.79%   

200-499 363 5.29% 2,533 16.27%   

500-999 549 8.00% 4,129 26.53%   

1000-1499 468 6.82% 1,986 12.76%   

1500-2499 745 10.86% 2,603 16.72%   

2500-3499 682 9.94% 1,209 7.77%   

3500-4499 646 9.42% 679 4.36%   

4500-5999 790 11.52% 715 4.59%   

6000-7999 574 8.37% 480 3.08%   

8000-10999 469 6.84% 284 1.82%   

11000-15999 288 4.20% 122 0.78%   

16000-29999 200 2.92% 79 0.51%   

>30000 80 1.17% 2 0.01%   

Other Employed respondents         1,955 

Total 6,860 100% 15,566 100% 1,955 

% of Total 28.137%   63.845%   8.019% 

 

 

The importance of including earnings range questions in the Labour Force Survey (September 

2003) is evident in Table 1. While 63.9% of the employed sample provided point data for 

earnings, a further 28.1% of the sample responded within an income band. This still restricts the 

analysis to a sub-sample of respondents; however the improved knowledge allows researchers to 

work with 92 % of those who were reported to be employed. Of particular importance is the 

number of respondents providing point income data in the lower categories, while those in 

higher income categories prefer the anonymity of supplying only their earnings brackets. Only 

two earners reported exact amounts in the open-ended category. If only point data is used, it is 

clear that a large proportion of South Africa’s earnings base is excluded from the analysis. This 

has implications for distributional questions, but also for the accuracy of coefficients: in addition, 

the quality of sample estimates is further degraded by those who declined to offer any 

information or falsely reported zero incomes. It is therefore important to find appropriate 

techniques to maximise the use of interval-coded data.  

 

Figure 1 illustrates how the inclusion of earnings brackets alters the relative frequency of income: 

the lower portion of the distribution of joint data is afforded less weight compared to point data, 
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while the upper portion undergoes an upward adjustment to account for underreporting. In 

section 4.3 the comparison with the implied lognormal DGP is highlighted. 

 

Figure 1 Distribution of Interval-Coded, Point and Joint Data 

 
 
The problem of missing data for the remaining employed in the sample (8% do not report any 

income information – see Table 1) can be addressed in future studies by microdata simulation 

(see Birkin & Clarke, 1995) and discriminant analysis (see Maddala, 1983: Chapter 4). The latter 

involves classifying an individual into any number of populations, given other known 

characteristics. In this case, the methodology would involve allocating an income band to those 

individuals who refused to answer, grouped according to attributes such as experience, education, 

unionisation, industry or occupation. This is analogous to obtaining predicted values following 

the estimation of a regression on the available data, and hence inferring augmented information 

to the sample. This method, termed multiple imputation, is described and applied in Brownstone 

& Valetta (2001: 136-139).  

 

 It should be noted that this simulated data must be compatible with the DGP, as mentioned 

above. Should non-reporters have different characteristics point and bracket respondents, this 

translates to a misleading practice. Multiple imputation is not implemented in this study: the 

focus remains  to test parameter differences across the various solutions to the interval coding 

obstacle. The question at hand dictates the need for such processes: for example, Keswell and 

Poswell (2004: 836) show from various previous surveys, that those who reported income did not 

possess statistically different educational characteristics from those who do not provide income 
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details. As such, multiple imputation would not have added new information to answer 

educational questions. Should one find that this group does indeed have different characteristics 

(given the proposed hypothesis), multiple imputation would be necessary to avoid distortion. 

 

3 Methodological Considerations 
 

Throughout, augmented Mincerian Earnings Functions are estimated for males, females and a 

joint sample. A parsimonious model is chosen, in accordance with knowledge from previous 

work. While the expected signs and the relative size of coefficients are well-known for South 

African data, the object of this study is not to draw new conclusions on the determinants of 

earnings, but to establish which methods provide the most reliable estimates.  

 

3.1 Sample Selection Bias 
 

First, the obstacle of sample selection bias is brought to account. Heckman (1979: 153-154), in 

his seminal article, outlines that when estimates are based on non-randomly selected samples, 

population estimates of wage equations are misspecified. In this case, the sample is restricted to 

those who are employed, and as such the influence of experience and schooling, for example, are 

misrepresented. Selection may be forced as a result of structural unemployment, which is of 

particular relevance to South Africa. A broader understanding, however, is based on the notion 

of self selection: if wages offered (regardless of how high they are) are below reservation wages, 

labour force participants will choose unemployment. Since these individuals (who may be well-

educated and experienced) are not incorporated in the earnings equation, coefficients are biased. 

Typically favourable characteristics in these cases do not improve earnings, and the true value of 

human capital is not apparent as a result of the selection. 

 

 Wooldridge (2002: 552) defines a wage equation only to be valid if it “represents all people of 

working age, whether or not the person is actually working at the time of the survey.” (italics in 

original). As such, a preliminary employment probit equation is consistently estimated to model 

the selection process. This precedes each earnings equation, from which the Inverse Mills Ratio 

(λ) for each group member is calculated. This is a function of the probability that each 

observation is included in the sample (Heckman, 1979: 156):  
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These ratios are included as regressors in the relevant earnings equations, and therefore correct 

for both under- and overstatement of each observation’s influence on the coefficients.  The 

inclusion of the sample selection term counters inconsistency for all coefficients and the omitted 

variable bias (albeit a generated variable) which derives from the selection process (Wooldridge, 

2002: 563).  

 

Bhorat and Leibbrandt (2001: 113) include a double hurdle selection equation: the purpose is to 

differentiate between the actual decision to participate and the probability of employment in 

South Africa. Given the extent of broad unemployment in South Africa, and the number of 

discouraged workers on the periphery of the labour market, such analyses may prove insightful. 

However, this exercise does not add any value if the sole purpose is to eliminate sample selection 

bias in earnings functions (Bhorat and Leibbrandt, 2001: 113).  

 

The “Heckit” model’s outline follows from Hill et al (2003: 2-3). It highlights the nature of the 

problem. First, the selection equation is defined, which models the “true” propensity to be 

employed: 

*

*

1

where

 : latent variable (underlying propensity to be employed)

:   x 1 row vector of   explanatory variables observed for the  individual

:  x 1 vector of  population paramet

γ

γ

′= + =

′

Kii i

i
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i

z w u i N

z

w m m i

m ers

: random erroriu

 

 



 8 

This latent variable is not directly observed and represents an underlying propensity to be 

employed, but the selection variable (employment dummy) is indeed observed, and is the 

dependent variable in the probit selection equation, where we model the probability that the 

individual is employed: 

 

*

*

1  if offered wage  reservation wage  (here  is observable, and person is employed)

0  if offered wage < reservation wage (here  is unobservable, and person is unemployed)

1

≥
= 


= K

i

i

i

z
z

z

i N
 

Now the “true” earnings equation follows as: 

( )log 1

where

: observations on the earnings variable

:  x 1 vector of observations on explanatory variables

:  x 1 vector of parameters

: random error

β

β

′= + = Kii i

i

i

i

y x e i N

y

x p

p

e

 

 

Now the assumption must hold that the respective error terms are independently distributed. But 

in general it is true that: 

 

2 2

10
~ ;

0

i

i e

u
N

e

ρ
ρ σ

     
     
     

 

 

The nature of the selection obstacle now becomes clear: if ρ=0 and z*i is perfectly observable, 

there is no problem. That implies that shocks to earnings would not influence employment and 

vice versa. Generally this is not true. If the entire population’s true income and employment 

propensity is observable, one can run OLS, without suffering selection bias.  
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Hence, conditioning on z*i>0 is necessary: 

( ) ( )

( )
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Wooldridge (2002: 564) indicates that the test for significant selection bias is a conventional T-

test of H0: βλ=0 within the earnings specification. This derives from the hypothesis that ρ=0 for 

the independence of employment and earnings processes to hold. Under this hypothesis, the 

standard assumption of homoskedasticity holds, while the introduction of significant sample 

selection bias causes it  to be violated, as is evident in the subscripted, observation-specific 

variance shown above. This leads to the next point of concern. 

 

3.2 Correct Standard Errors and Confidence Intervals 
 

Given the importance of testing coefficients’ comparative precision, correct confidence intervals 

– unaffected by impure standard errors – are a necessity. Initially, the Heckman covariance matrix 

(based on the above scenario) is implemented. The first correction applies robust standard errors, 

according to the Huber-White covariance matrix (Hill et al, 2003: 5): 

 

( ) ( )1 1

where :  x  is the data matrix

and :  x  is a diagonal matrix with squared OLS residuals on the diagonal

− −

− ′ ′ ′Σ =Huber White X X X DX X X

X n p

D n n

 

 

These are reported when weights correcting for sample design are accounted for in the 

estimation procedure. Statistics South Africa (StatsSA) (2003a: 2-3) outlines the calculation of 

these weights as the inverse of the probability that the household and the sampling unit are 

included in the survey. This adaptation should not be confused with sample selection.   
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Wooldridge (2002: 564) sounds the warning that robust standard errors may nonetheless be 

misleading, as βλ is itself the coefficient of an estimated stochastic quantity.  The same problem is 

encountered when generalised least squares is sought as a solution (Hill et al, 2003: 3). 

 

 Hill et al (2003: 4-12) evaluate the adequacy of implementing various proposed asymptotic 

variance-covariance matrices with Monte-Carlo simulation studies. The cases investigated are: the 

usual OLS covariance matrix; a heteroskedasticity corrected variance-covariance matrix (which 

does not take into account the randomness of λ ); the White  heteroskedasticity consistent 

estimator, an adjusted form of the latter; the formulation originally proposed by Heckman (1979: 

159), later modified by Green; a Murphy-Topel estimator, along with a modification by Hardin 

for 2-stage estimation. The final approach uses bootstrap estimation: repeated samples are drawn 

from the data matrix, with replacement, to approach true finite sample measures. For small 

samples and considerable censoring, none of the variants above perform satisfactorily (Hill et al, 

2003: 18). For large samples, estimator variability was reflected well by the bootstrap procedure. 

Since LFS survey data constitute large samples, this procedure is deemed most appropriate to 

compare the parameter estimates of the models proposed below.  

 

Henderson (2005: 3) provides a brief overview of the process and benefits of using bootstrap 

estimation. The basis is repetitive sampling with replacement:  an unknown population 

distribution can be inferred, by deriving properties from the many samples. As such, the parent 

population is approximated as the number of repetitions is increased. Sprent, in Henderson 

(2005: 3) claims: “The more vague the supposition about population distributions, the more 

useful the bootstrap becomes.”  This underlines the attractiveness of implementing this method, 

as random repetitive sampling approaches the truth when there is no agreed distributional form 

to follow as a beacon: accuracy no longer rests on a formula, assumptions may be relaxed, and 

essentially the data reveals more about itself, without mathematical imposition. Brown (2000: 

437) advocates the use of bootstrap for cases where asymptotic variance is impossible or difficult 

to calculate. In addition, the perception exists that these standard errors are more accurate in 

finite sample situations. Distributions of parameters are deemed to be closer to the true 

population approximation than limiting distributions. 

 

Brownstone & Valetta (2001: 131) uncover the mechanics used in bootstrap regression 

estimation. If the sample size is n, then for each repetition implemented via the bootstrap, n rows 
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of the data matrix (along with the associated element of the dependent variable) are sampled with 

replacement. This implies that some rows probably appear more than once in a single repetition’s 

“new” data matrix, while others are excluded. The observations used therefore differ for each of r 

repetitions, and each time a different set of coefficients is estimated. The term “paired bootstrap” 

is applied. The resulting observed distribution of the r sets of coefficients eventually 

approximates the population distribution. This will deliver consistent results, regardless of the 

nature of the underlying standard errors in a usual regression. Brownstone & Valetta (2001: 132-

133) implement sequentially different methods in their own earnings study: ordinary OLS 

confidence intervals are narrower than robust confidence intervals, while bootstrapping resulted 

in the broadest intervals. This is indicative of the difficulties involved with even asymptotic 

corrections. 

 

Since the purpose of this study is to obtain good confidence intervals, unaffected by impure 

standard errors or false distributional assumptions, a discussion follows to describe bootstrapped 

intervals, which follows Henderson (2005: 6-8). Percentile intervals involve first arranging the r 

sets of coefficients in descending order and assigning ranks to each. A 95% confidence interval is 

constructed by assigning the 2.5% and 97.5% quantiles of this generated distribution to the 

bounds. As r increases, a confidence interval attains accuracy, as continuous estimates are added 

to the “distribution”, and bounds are clearly established. Deficiencies in this method have 

necessitated the implementation of bias-corrected intervals, both as a result of inaccuracy and 

asymmetries in the distributions. This method is implemented in STATA via jackknife 

procedures. Second order accuracy is achieved, as errors decay at a rate of 1/r. Therefore a large 

number of replications will lead to satisfactory interval estimates.  

 

The question which remains is how many repetitions are necessary to reach the “truth”: since this 

technique is computer intensive, it can readily be executed many times. Henderson (2005: 5-6) 

maintains that 200 replications are necessary to approximate standard errors, however in excess 

of a thousand are necessary for confidence intervals. Given that no distributional assumptions are 

made, the pivotal statistics and standard errors are not accompanied by tabled percentiles to 

complete the process of calculating a confidence interval. It is therefore necessary to increase the 

iterations in bootstrapping to obtain improved distributional knowledge. Brownstone & Valetta 

(2001: 132-133) implement 1000 repetitions for confidence intervals. Improved computational 

speed allows the use of 10000 replications in this study.  
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Hill et al (2003: 9) emphasise the responsibility of the researcher to report not only models 

implemented, but the software (and version thereof) used to reach results. Each programme may 

use a specific correction of the variance-covariance structure to achieve “robust” standard errors: 

not only have programming errors occurred in the past, but the fundamental validity of various 

forms are drawn into question, as above. As such, it is noted that the software used in this study 

is STATA/SE 9.0. (Statacorp, 2005). Estimation follows a standard built-in Heckit 2-step 

procedure, followed by a manual weighted Heckit 2-Step implementing robust standard errors, 

but also a Heckit 2-step with bootstrap estimation to approximate true standard errors (as in Hill 

et al, 2003: 26). All methods are implemented for comparative purposes.  

 

4 Dependent Variable Variants 
 

4.1 Generalised Tobit - Interval regression (basis): 
 

As a basis case, an interval regression is implemented. This is a generalised Tobit model and is 

estimated via pseudo-maximum likelihood procedures when weighting is brought into account. 

Therefore an understanding of Tobit estimation is first reviewed (following Wooldridge, 2002: 

517-525): 

 

Suppose y is observed, which represents the underlying variable y*. A truncation point exists, so 

that y is not observable past or before a particular value of y*. We consider the model when an 

upper truncation point arises (which represents the case when of open top category). 

( )

( )

*

2

*

log 1

~ 0; 1

 if the respondent supplies point data              
1

   if  the respondent supplies an earnings bracket

where  is the lowerbound of the upper category

β

σ

′= + =

=


= =


K

K

K

ii i

i i

i

i

y x u i N

u x N i N

y
y i N

c

c

  

 

y* is therefore restricted to the values observed over the range of y even if one is aware that the 

potential value is possibly different. In this case c is termed a “corner point”. In the interval 

regression generalisation, interval-coded datapoints have both a lower and an upper "corner 

point". 
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It can be shown that 

( ) ( )

( ) ( )
( )

i

ˆlog , / 1
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/
ˆ / 1
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 :  x 1 is the true population parameter vector

 is the standard error of regression
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This shows that the expected value of the true variable in its observed range is larger than the 

OLS estimates (x’β) using the data points which are indeed available. For this reason it is 

postulated that simply applying OLS to available data points is not a satisfactory method, which 

introduces inconsistency: the omitted λ̂
i
 is clearly correlated with the other regressors of the 

known range. The Tobit and consequently the generalised Tobit models therefore provide better 

estimates to base findings on. 

 

Daniels and Rospabé (2005: 2) provide a log-likelihood function adjusted to make provision for 

point, left-censored (unused in this setting, since the first earnings group contains only zero 

values, which are counted as missing when logged), right-censored (top income category with 

only a lower bound) and interval data: 
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 A similar log-likelihood is applied in Wik et al (2004: 2447).  

 

This method does not require the assignment any value within the ranges of interval-coded data, 

and can therefore be regarded as a reliable starting point, which removes the process of educated 

guessing. It does, however, rest on the assumption of the normality of logged earnings, and 

consequently a lognormal distribution for the untransformed earnings variable. Supplementary 

interval information is soundly incorporated into the procedure, and broadens the base of 

research from only point observations. Further work will be judged in the light of this 

specification.  

 

It is evident in the framework above, that the inverse Mills ratio inherent to the Tobit family, 

already accounts for a bias. Daniels & Rospabé1 (2005) maintain that this correction accounts for 

sample selection bias. The interval regressions in this study are nonetheless specified with Inverse 

Mills Ratios, which prove to be significant and point to the fact that the bias is not completely 

overcome. 

  

4.2 Alternatives – Imputation 
 

Whiteford & McGrath (1994: 28-29) list, among others, two methods to approximate the income 

distribution: the Midpoint method and the Midpoint-Pareto method.  

 

                                                           
1
 While this is not explicitly referred to in their paper, this assertion was confirmed upon communication with the 

authors 
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4.2.1 Midpoints 

 

This method is conceptually simple and widely implemented by researchers. It is assumed that 

each person who supplies his/her income bracket earns the category mean - its midpoint. Since 

no upper bound exists for the top category, it is assumed that the mean exceeds the lower bound 

by 10%. The pitfall of this method seems to be its lack of theoretical backing (Whiteford & 

McGrath, 1994: 28), but at the same time it may be attractive due to the limited knowledge of 

statistics required. If this method is approximately close to that of an interval regression in all 

cases, it confirms much of past research. Keswell & Poswell (2004: 854) point to a practical 

problem (ignoring any statistical properties which may be violated in the process): as survey years 

progress, income brackets will invariably change with inflation. In effect, the midpoints vary over 

time, and coefficients are not comparable.  

 

 Survey design and the size of brackets introduce sensitivity in estimation. In particular, the broad 

lowest category in the 1995 October Household Survey afforded too much weight to the upper 

portions of that bracket (Keswell & Poswell, 2004: 855); other surveys broke down the band into 

smaller intervals, and midpoint estimates fared better in comparison. Seiver (1979: 230, 232) 

maintains that the true mean of any interval will always be below its midpoint, and that income 

distribution results are influenced by the number of intervals chosen to span the range – fewer, 

wider brackets distort the picture. This methodology is included, but the sensitivity of results can 

only be tested for this particular interval structure: the benefits are pronounced, given that the 

specific ranges and interval sizes  of South African household surveys have been maintained since 

OHS 1996. 

 

4.2.2 Midpoint-Pareto Method 
 
Given that lower income categories are narrow, the distribution of income at the bottom end is 

not markedly influenced by midpoint imputation (Whiteford & McGrath, 1994: 29). However, a 

parametric approach is necessary for higher income categories, as greater skewness within groups 

becomes evident. Crato (2000:1239) emphasises the need to “model situations in which extreme 

values are observed with a relatively high probability” with the use of heavy-tailed distributions 

such as the Pareto. As such, a “Pareto Mean” is estimated for the open upper category (but also 

for selected bounded categories in the upper tail) and is assigned to each interval-coded 

datapoint. This value will deviate from the midpoint, according to the heaviness of the tail. 
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Pareto was the first to concern himself with the heavy tail evident in empirical income 

distributions, but concluded that the distribution which resulted from his work only clarified the 

distribution of the right tail with any precision. Additionally, the fact that no closed form exists 

for evaluation purposes, was a deterrent before computer intensive implementation became 

possible (Dagsvik & Vatne, 1999: 4-5). Mandelbrot (in Dagsvik & Vatne, 1999: 6) broadened the 

scope of this work by investigating the so-called class of “stable distributions” of which both the 

Normal and Pareto distributions are members. These have the property that a linear combination 

of several stable distributions remains a stable distribution. Mandelbrot applied this to income 

distributions relating to various sources: for instance the distinction between wage and capital 

income. He found that these sub-grouped distributions had approximately the same shape, and 

that by use of stable distribution properties their sum would maintain these characteristics.  

 

For the purposes of this study, the methods employed by Whiteford & McGrath (1994: 81-84) 

and Gustavsson (2004: 20) are utilised. The probability density function of the Pareto distribution 

is given as: 

( )
( )1 for 0  and 0

otherwise                      0

αα αα − + ≥ ≥ >
= 


Y

y kk y
f y  

with α  a shape parameter, which needs to be estimated. This can also be expressed in the log-

linear form: 

log logα= −P k Y  

Where Y represents any given level of income and P is the proportion of the sample earning that 

amount or more. 

 

The latter equation underlines the intuition which Pareto used in the derivation of the 

distribution: Pareto’s “Law of Distribution” postulates, on the ground of empirical observation, 

that a log-linear relationship exists between an income level and the number of people who earn 

greater or equal that amount (Whiteford & McGrath , 1994: 81).  

 

The above equation can be implemented by OLS on the point data in the sample to obtain an 

estimate of α within each cohort. The next task is to establish the range over which the data does 

indeed match the Pareto distribution. Parker and Fenwick (1983: 874) assert that this relationship 

is only linear in the upper tail. Gustavsson (2004:20) proposes various proportions of the upper 

tail for which the data are maintained to fit the equation well; Whiteford & McGrath (1994: 29) 

suggest using usual midpoints below the category which contains the median income, and Pareto 
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means for all income brackets above that. Following the procedure set out in their appendix 

(Whiteford & McGrath, 1994: 81-82), the equation is estimated with all categories. Successively 

the lowest income band is excluded from the estimation. That equation which exhibits the best fit 

in terms of the R2 of the regression is deemed to contain the most reliable estimate of α, but also 

serves as an indicator of the portion of the tail for which the distribution holds. The lowest 

category included in this “best” equation is therefore deemed to be a suitable starting point to 

impute Pareto Means. 

 

Estimates conducted in this study for LFS September 2003 suggest imputing Pareto means for 

the following categories (with midpoints below these). For females the regression method implies 

including all categories with earners above R6000 per month. This is the range over which 

brackets increased from an interval covering R1500 to a wider range of R2000: this result 

therefore confirms the broad interval problem as outlined above. While the male estimation 

procedure suggests the inclusion of categories above R1500 (where intervals grow from a range 

of R500 to R1000), the fit is only marginally better compared to the scenario established for 

females. To remain consistent with the “broadening interval” criteria, as well as to maintain 

uniformity between groups, it was decided to choose the cut-off for mean estimation and 

imputation of R6000 and above.  

 

Crato (2000: 1251-1252) concludes that the regression estimator of α has a smaller bias than the 

proposed Hill-Hall estimator. A modified version of the latter, however, has a smaller variance 

than the regression estimator: results are, however, similar, and this simple conceptual method is 

maintained for this study. It is, however, clear that procedures such as these still depend largely 

on survey design and the size of intervals. 

 

Consequently, the Pareto means (conditional on the range of each applicable category) can be 

calculated. Appendix 2 reveals that the imputed Pareto means can be obtained as follows, where 

a and b are the lower and upper bound of the bounded category concerned and α̂  is the regression 

estimator of the Pareto shape parameter: 

ˆ ˆ1 1

ˆ ˆ

ˆ
ˆ 1

ˆ1

α α

α α

α
α

α

− + − +

≤ ≤ − −

−
= >
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These respective means are imputed to the interval-coded observations above the threshold 

referred to, given the applicable bounds. Below this point, the usual practice of midpoint 

imputation is followed. 

 

For the open-ended interval, each right-censored value in that category is assigned the following 

mean: 

ˆ
ˆ 1

ˆ 1

α
α

α≥ = >
−pareto Y a

y a  

a is the lowerbound of the open interval, while α̂  is the regression estimator of the Pareto 

parameter. 

 

4.2.3 Lognormal Means 
 
Gustavsson (2004: 20-21) explains the implementation of a lognormal distribution over earnings 

data. This distribution also has a heavy tail, and justifies the assumption in its use as a distribution 

to fit income data. When data is expressed in log form, a normal distribution is fitted, and as a 

result the untransformed data will be lognormally distributed. The standard procedure is to use 

maximum likelihood estimation on the log of earnings to find the mean and variance for the 

distribution of the data available, and use these as parameters of a normal distribution to simulate 

the rest of the data. Maximum Likelihood procedures are complicated by iterative computations, 

which may prove to be time-inefficient. Integrals do not possess a closed form, and therefore 

various estimates do not converge to the same value when different techniques are used. The 

introduction of censored and interval-coded data adds further complications in the maximum-

likelihood iterations. (See Sultan, 1997 and Hajivassilou, 2000 and Hajivassilou et al, 1996 for 

attempts to simplify and find satisfactory maximum likelihood estimates in the presence of  

Limited Dependent Variables).  

 

It is first necessary to find the mean and standard error of the log-transformed variable. This 

study implements an interval regression on the log of point and categorical earnings data without 

regressors, bar for the constant. From this computation, an estimate of the distribution’s mean 

(the constant) and its standard error (standard error of regression) is obtained. Appendix 3 

elaborates the imputation of normal means to the intervals in log format by the following 

formula: 
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normal
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 This can be applied to interval-coded data, as well as the bottom category (which has a lower 

bound tending to negative infinity) and the open-ended category (which has an upper bound 

tending towards positive infinity). When normal conditional means are imputed to the logged 

data, the variable in raw format by default assumes lognormal imputation.  

 

4.3 Preliminary Evaluation of Imputations for LFS – September 2003 

 

Figure 2 Kernel Density Plots - Comparison to benchmark DGP's 

 
 

This section follows suggested and adapted methods of Keswell and Poswell (2004: 854-856), 

which are outlined further in Appendix 5.  
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The resulting densities in Figure 2 reveal the stark differences between the point data DGP and 

the joint sample DGP. It is clear that greater weight is assigned to the lower earnings groups 

when only point data is used. This therefore confirms the usefulness of including income 

brackets in survey question design, as it captures the lost information in the upper tail of the 

distribution. For this dataset it is evident that the distribution of the joint simulated data (which is 

assumed to represent the process underlying the interval regression), the midpoint, Pareto mean 

and the lognormal mean imputations are virtually indistinguishable. The continued analysis of all 

techniques is therefore justified, as the shape of each is similar. However, even mild potential 

deviations highlight the biases which the different techniques possibly accord to the data, and call 

for parametric estimates to separate the good methods from the poor.  

 

5 Variables and Specification 

The standard Mincerian Earnings Function (Mincer, 1974: 130) can be expressed as 

 

0 2

, 0 0

,

log log
2
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t
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This formulation attempts to capture the full influence of human capital development on 

earnings: both within the educational system, but also the additional skills acquired following 

entry into the labour market. 

 

Earnings of a person who has undergone s years of schooling and has been in the labour market 

for t years is indicated by Ys,t and Y0 therefore represents the earnings which would accrue to a 

person who has neither any training nor work experience: it serves as the constant in a regression 

setup. The estimated returns which s years of schooling has in terms of earnings is captured by rs, 

and similarly rp represents returns on any post-schooling investments (on the job training, 

accumulated knowledge). Experience is incorporated into the model via t. The ratio of accrued 
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investment to earnings when a worker enters the labour market is k0: jointly rpk0 - the coefficient 

of experience -  represent the returns on a combination of schooling and labour market inputs. 

This term is also evident in the coefficient of the quadratic form of experience which enters the 

equation. The motivation for the negative sign is derived from the inclusion of T (the positive net 

investment period) in the denominator of the coefficient: this implies that as the timeframe over 

which workers increase their expertise progresses, the marginal returns of experience declines.  

 

This specification simplifies in the current framework, with the resulting coefficients as implied 

from the above description: 

 

( )

( )

2

0 1 2 3 i

2

log Earnings education experience experience 1

~ 0;

β β β β β ε

ε σ

′= + + + + + = Kii i i iother

i
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Now βother’x represents coefficients which are specific to the South African labour market, as well 

as advances in the understanding of the determinants of earnings. The inclusion of racial dummy 

variables, as well as controlling for union membership are (not exclusively) specific to South 

Africa, while the inclusion of a quadratic term for education has recently enjoyed attention in a 

wider spectrum of the literature. Elaborations of the specification and some characteristics of the 

sample used are highlighted below: 

 

5.1 Earnings 
 
The survey allows respondents to supply figures on the basis of weekly, monthly and annual 

earnings. Overtime, allowances and bonuses, before taxation and deductions, are accounted for 

(StatsSA, 2003a: 49-50). Monthly earnings are used in this analysis. The choice of this magnitude, 

as opposed to the hourly wage, should not affect the outcomes of the study significantly, given 

the assumption that the workers’ life-time behaviour (in terms of their choice of working hours) 

is determined exogenously (Keswell & Poswell, 2004: 838). It is further questionable to convert 

interval data into other frequency domains (Daniels & Rospabé, 2005: 6). It would be preferable 

to use hourly wages to remove the effects of longer working weeks on earnings, however the 

inclusion of log(hours worked per month) as a regressor partially accounts for this discrepancy, as 

revealed in the arithmetic below. This term is expected to play a positive role in the determination 

of earnings. 
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Now specification (1) is a more flexible version of the earnings function, and nests the Mincerian 

function if (βH-1) = 0. 

 

The nature of the earnings data in the survey is central to this study and is discussed above. 

Mincer (1974: 130) motivates the use of logged earnings as a dependent variable as opposed to 

obtaining untransformed level estimates: experience and education can be expressed in time 

units, and need not be approximated by monetary equivalents. The sample is restricted to those 

typically assumed to be in the labour force, namely workers between the ages of 16 and 64. These 

bounds are reflected in the legal working age for the youth (who are assumed to be in education) 

and legislated pension ages. 

 

5.2 Returns to education 

 

Van der Berg and Burger (2003: 496) commence a study on educational inequalities by posing the 

question whether the intended rectification of human capital inequalities in South Africa is indeed 

being achieved via the education system. Bantu education policies and separate schooling systems 

are known to have introduced stark differences not only in the skill levels within the economy, 

but indirectly translated to the differentiated earnings achievable by various racial groups. The 

change of dispensation and the accompanying unified education system should (by inference) 

result in an equal footing within the labour market. The augmented Mincerian Earnings function 

proves to be a workhorse to measure progress or indeed a lack of success in this endeavour. 

While this study does not include interaction coefficients to measure effects on earnings of the 

particular education which Blacks, Whites, Coloureds and Indians receive, the methods employed 

here will improve any estimates indeed obtained, given the different imputations employed. 

Should education coefficients prove to be significant, and show increasing influence, pre-labour 

market human capital development can be deemed effective in South Africa. As this is the first 

step in eliminating disparities, it is important to monitor the progress of the educational 

institutions of this country. Experience in post-entry positions can only be effective in human 



 23 

capital and earnings progression if a person has attained a suitable qualification to improve 

prospects in the first place. This is reflected in the Mincerian framework above, where the 

coefficient of experience combines factors relevant to both pre- and post-labour market entrance. 

Chamberlain & van der Berg (2002: 26) show that differential quality of education accounts for 

much of post-entry wage discrimination in the labour market: this underlines that this facet of 

human capital investment is perpetuated and influences the success of subsequent investments. 

Successful education will result in a better capacity to assimilate valuable experience, which in 

turn translates to improved earnings potential. Experience cannot be divorced from the basis of 

education. 

 

5.2.1 Quadratic Specification – new evidence 
 
Dacuycuy (2005: 2) implements a semiparametric procedure to establish the nature of the 

earnings function without assuming previous knowledge of its specification. That is, it does not 

assume that experience enters in both the quadratic and linear forms, and education only in the 

linear form. Estimation rather follows the following procedure: 
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The given  fXi(•) are evaluated via kernel density estimation and an integration procedure. 

Dacuycuy (2005: 5) found that the relationship between earnings and schooling is indeed non-

linear for the Philippines, and that when interactions are omitted, convexity exists.  

 

This finding is confirmed for South Africa by Keswell and Poswell (2004: 844), who show that 

when controlling for potential experience, the returns to education are positive for the first 12 

years of education. The additional positive quadratic term causes predicted income to rise even 

more sharply following this attainment. Tertiary qualifications benefit an entrant into the labour 

market with greater magnitude than a matric certificate. Chamberlain & van der Berg (2002: 26) 

conclude, with reference to a study of Mwabu and Schultz, that returns for a specific level of 

education decline as the proportion of the population attaining that level increases. This inverse 

relationship is evident in the high premium attached to tertiary qualifications. As a result, large 

imbalances exist, with secondary education (which can be regarded as some workers’ most 

realistic opportunity to improve their earnings potential) adding little value compared to higher 

education (which is acquired by few). 
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5.3 Experience – approximation and relevance 
 
Mincer (1974: 129) ascribes the primary reason for the inclusion of experience in the human 

capital framework to the fact that the completion of a schooling career does not conclude the 

investment in human capital.  Further, these investments generally occur at a young age, with 

diminishing rates of new learning as people age – this translates to the declining additional 

earnings return available from current investments later in life and justifies the inclusion of a 

quadratic term in the specification. An approximation of experience is used ( exp=age-years in 

education – 6 ) to separate as far as possible the returns of education from the returns from on the 

job training.  

 

Keswell and Poswell (2004: 836) motivate their use of age instead of potential experience, due to 

specific factors in the South African labour market: the large number of learners who repeat years 

at school, the fact that a substantial proportion of learners do not complete the full number of 

years of education and that those within the labour market are not likely to be employed during 

all the years outside of formal education. Mincer (1974: 129-130) himself warns against the 

difficulties of approximating the variable in this fashion: in particular, it is evident for females 

that actual experience data is relevant instead of a variable defined largely by the individual’s age. 

Indeed, the estimates in this study for the potential experience co-efficient do not reflect theory 

in the particular cases where females are included in the sample. This could be a result of unequal 

labour markets which still prevail in South Africa: females traditionally stay at home for longer 

years, hence potential experience does not count in their favour as much as the actual experience 

which males accrue.  

 

Age, however, does not account for the actual on the job training which increases the earnings 

potential of workers – hence its use is not implemented in the earnings equations as such. Daniels 

& Rospabé (2005) employ a tenure variable, which is directly available from survey data. This 

accounts for the length of time respondents have spent at their current jobs. While this proxy is a 

well-defined quantity, and serves the cause of empirical accuracy, it is not deemed to represent a 

person’s lifetime accumulated knowledge and expertise. It may well capture firm-specific skill 

acquisition. The longer an employee stays with a firm, the better are the prospects for internal 

promotion. 
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Further, job reservation in the previous dispensation and Black Economic Empowerment in the 

current may undercut the relevance of raw experience in earnings determination. Rather, earnings 

may be reflected by the influence of labour market regulations. These peculiarities may form 

interesting corollaries within future studies. 

 

Since this study does not attempt to establish directly the determinants of earnings in South 

Africa, these difficulties are noted. Coefficients are tested for stability, and not used to confirm or 

refute their theoretical bases. 

 

5.4 Racial Dummies 
 
The nature of South Africa’s labour market and the historical context dictates that racial dummies 

are still significant in earnings equations. A number of studies incorporate the imbalance by 

estimating separate equations for Black and White cohorts (see Chamberlain & van der Berg, 

2002; Mwabu & Schultz, 2000; Rospabé, 2002), which has useful applications for decomposition 

of differences and discrimination in wages among racial groups. Rospabé (2002: 210) concludes 

that while there has been a reduction in earnings and employment gaps among the races, 

differences remain substantial. Earnings functions therefore have important applications in 

establishing whether restitutive legislation has proposed effects. A further option, implemented 

here, includes dummies within a joint equation (in terms of race). The Black cohort is chosen as a 

basis (excluded from the analysis), with relative estimates obtained for Whites, Indians and 

Coloureds.  

 

5.5 Union Membership Dummy 
 
Hofmeyr (1999) and Hofmeyr & Lucas (2001) investigate in particular the role of unionisation in 

South African labour markets. During apartheid years, Black South Africans were restricted in 

their job prospects; in addition collective units such as labour unions were banned under the 

dispensation. Already during the run-up to the regime change, active moves were implemented to 

protect workers. As a consequence, the labour market (which has an undersupply of labour 

relative to demand) is segmented and polarised into unionised high earners and non-unionised 

low-earning workers, despite the same productivity potential in both cohorts (Hofmeyr, 1999: 1). 

The increasing influence of unionisation is witnessed by the escalating wage premium of 

unionised workers over non-unionised workers (for urban African males) from 8% in 1985 to 

23.5% in 1993 (Hofmeyr & Lucas, 2001: 708). The effect of the union dummy therefore 

quantifies “non-investment” (in Mincerian terms) action which influences earnings positively.  
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5.6 Urban 
 
Bhorat & Leibbrandt (2001: 124) use the urban-rural dummy to distinguish between geographic 

divisions. Provincial dummies may present results contrary to common knowledge, as each 

province has internally heterogeneous characteristics which attract different workers. While these 

may possess interpretative value, parsimony is emphasised and the focus remains on the urban 

dummy. The urban rural divide has a clearer differentiating power, as  the type of work (with 

associated earnings) is more accurately divided between the groups: industrial workers are likely 

to agglomerate in urban areas, while agricultural workers will remain in rural areas. In South 

Africa a positive return for urbanisation is witnessed, as in any modern economy.  

 

5.7 Selection Equation 
 
The selection equation’s specification includes household and demographic variables which may 

hinder or lead people to seek employment. Age is expected to have a positive influence, as the yet 

unskilled youth is less probable to be employed (this may also be indicative of the fact that recent 

jobless growth means low absorption rates of younger workers, and retention of older 

employees). Provincial dummies reflect the unemployment situation within each region. The 

number of children younger than 6 in a household particularly influences a female’s choice to 

participate in the labour market negatively, as care is afforded to her offspring, while males might 

seek employment more fervently to provide for the young. The number of working and pension 

age household inhabitants also negatively influences the probability of employment via the 

decision to participate, as a result of a household safety net. Per capita household income should 

negatively influence the probability of employment, as other household members support each 

other in the case of unemployment. Care was taken to heed the warning of Hill et al (2003: 18) to 

keep variables in the earnings equation separate from the selection specification to avoid adverse 

effects on standard errors.  

 

6 Results 

6.1 Simulation Evidence 
 

A known dependent variable was generated according to the following structure: 

( )= + ~ 0,1y x e e N  
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y was subsequently converted into both narrow and wider categories2, and simulations proceeded with 

1000 repetitions, using midpoint OLS and interval regression estimates. Results are shown in Table 2. 

Narrow intervals appear to be insensitive to either method, with mean coefficients very close to the true 

value of 1. P-values do not deviate substantially from the expected 0.05. Wider intervals’ coefficients do 

not appear visually different from 1, however, the p-value for the midpoint imputations (0.143) is 

significantly larger than 0.05. Interval regressions remain relatively unscathed. This highlights that if 

intervals are “too wide”, midpoint imputation distorts inference, compared to the sustained reliability of 

interval regressions. It is therefore imperative to establish whether survey brackets in South Africa are 

suitably narrow  with parametric comparisons. Should they not be, it is evident that interval regressions 

are the most suitable econometric tools to prevent misleading judgments. 

Table 2 Monte Carlo Simulation  - Midpoints and Interval Regressions 

Narrower Intervals Wider Intervals αααα=1, 
 1000 

repetitions    
Midpoints 
(OLS) 

Interval 
Regression

Midpoints 
(OLS) 

Interval 
Regression

Coefficient 0.9998 0.9996 0.9850 0.9997
(p-value)3 (0.042) (0.050) (0.143) (0.056)

 

 

6.2 A brief word on some of the coefficients 

While this study is focussed on parameter comparisons, a short exposition of their magnitudes is 

called for. Discussion is limited to the male equation with bootstrapped confidence intervals 

(Table 12). The inclusion of females in the sample distorts economic interpretation via the 

experience variable, as discussed above. 

 

First, the sample selection correction term is significant in all cases. This underlines that earnings 

and employment processes are intertwined. In South Africa, the high unemployment scenario 

should be kept in mind when wage determination is considered. 

 

Experience enters positively and experience squared negatively, which underlines Mincerian 

theory. The convexity of returns to education is confirmed in this context, with both the linear 

and quadratic forms exhibiting a positive relationship with earnings. While education is the only 

variable to enter insignificantly (at a 5% level) for all methods in the linear form, it is significant in 

the quadratic form and joint interpretation should be exercised. White males reap larger returns 

than Indian counterparts, who earn more than Coloureds, who in turn earn more than Black 

                                                           
2 Narrow intervals divided the income range into 7 equally sized ranges, with open ends on either side. Wider 
intervals were twice as large. Open categories exceeded their nearest bounds by 10% for the midpoint imputation. 
3 The proportion of the 1000 replications for which the T statistic which tests H0: a=1 exceeds 1.96, the 95th 
percentile of the applicable t distribution. 
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males. This scenario depicts the racial segmentation still prominent from the Apartheid labour 

market. Urbanisation and unionisation exhibit positive returns, as expected.  

 

The most interesting feature of the coefficients is that the influence on earnings of the Mincerian 

variables is only small in the context of the rest of the model: the coefficients on human capital 

investment are overshadowed by “non-investment” features such as race, location and union 

membership. This underlines the fact that South African earnings are still largely determined by 

“by-products” of political marks on society and interference in the labour market. Traditional 

routes to improve earnings (and the equality thereof) therefore prove to have little effect. Can 

one really rely on education to make disparities obsolete? Even union membership provides 

greater returns than an additional year of education or experience. Ineffective labour markets 

therefore allocate more reward to non-productive activity than to skills development. 

 

6.3 Method Comparison by Confidence Intervals 
 
This section presents intuitive evidence of parameter equality: do the compared coefficients’ 95% 

confidence intervals overlap?  Tables 5, 9 and 13 provide a good overview of the results obtained 

via bootstrap methods. The cross-tabulations consider whether the coefficients of the interval 

regression and the imputations fall within each others’ confidence intervals. Similar computations 

were done for the robust intervals, which produced near identical conclusions. The 

overwhelming result is that all coefficients (independent of method or imputation) fall within 

each of the others’ 95% confidence interval. This is true for each cohort investigated. The results 

obtained here therefore confirm the preliminary analysis performed on the data. It should be 

emphasised again, that these conclusions apply to the specific data structure concerned and 

cannot be generalised to all household surveys. While a quick scan of the coefficients would 

convince the analyst that they approach equality, the naked eye fails to detect some underlying 

statistical differences. 

 

6.4 Multivariate Testing Framework 
 
Appendix 6 introduces a more rigorous multivariate testing procedure to test the intuitive results 

obtained above. It is possible to model a multivariate regression, with each of the imputations 

(interval regressions are not compatible with this framework) constituting the dependent variable 

vector with a common matrix of explanatory variables. It is simple to perform joint Wald tests to 

compare coefficients across the constituent equations. This procedure takes into account not 
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only the variances of the coefficients, but also their covariances. A Bonferonni adjustment is 

implemented to account for the dependencies of hypotheses. 

 

It is evident that no estimated equation is in its entirety equivalent to another in each of the 

samples. Which variables drive the differences? In each case, the coefficient of the Inverse Mills 

Ratio in one equation significantly differs from that in the others at a 5% level of significance. At 

this point, sceptics might question the inclusion of a selection correction term within the interval 

regression. The exclusion, however, delivers substantially different results compared to any of the 

traditional imputation methods, which do require the correction (the coefficient of the Inverse 

Mills’ Ratio is statistically significant at 1% in all cases, even in the interval regression). The 

stochastic nature of the Inverse Mills Ratio therefore provides a more satisfactory explanation for 

the discrepancy. The equality of magnitudes, is however not the emphasis in this case, but the 

fact that it corrects for biases. 

 

The next striking feature of the analysis is the large number of differences between the 

coefficients of the Lognormal and Pareto-Midpoint imputation equations. The source of this 

discrepancy can be traced to the fact that the Pareto-Midpoint method was applied in a gender-

specific manner, while the lognormal imputation considered the sample jointly. The Pareto-

Midpoint variable is not determined by a single imputation and does not result in a satisfactory 

representation of the DGP. Researchers should take care to generate separate imputations, 

specific to the sub-grouped or entire samples to be used.  

 

The male estimates are least affected by this difficulty (with only the coefficients of Selection, White 

and Indian rejecting the hypothesis that 
logβ β=

pareto normal
at a 5% level of significance). This 

suggests that the specific male imputation is best at capturing information which is also relevant 

to an imputation which considers the entire sample. Female estimates degenerate further, with  

Selection, Experience, Education, Education2 , Coloured and Union rejecting the hypothesis at 5%. This 

list is dominated by the Mincerian “investment” variables, which highlights that these are not 

particularly stably determined for females, as noted above. The female-specific imputation is less 

representative of a joint imputation.  This highlights that researchers are able to model the male 

DGP with greater ease, but that the underlying process in the female sample is less well-known 

and differs more substantially from the entire population’s DGP than does the male DGP.  The 

single equation estimates compare very poorly; this discredits a gender-specific imputation 

strategy.  
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The fact that these differences are fewer when Midpoint estimates are compared to the 

Lognormal imputation, (in particular that only Selection, Coloured and Urban differ at a 5% level of 

significance for males), reveals that a sample-specific imputation does matter. In both cases 

imputations were conducted on the sample as a whole.  

 

Further differences are few. It should be noted, however, that the male equation appears to have 

the most stable coefficients spanning the different methods employed. For the 

Midpoint/Midpoint-Pareto comparison, only the Inverse Mills ratios are statistically different 

(this can be ascribed to the fact that the lower tail is generated identically, but still asserts that the 

upper tails are close to each other), which is joined by Coloured and Urban in the Midpoint-

Lognormal comparison: it is encouraging that these are not Mincerian variables, which form the 

basis all earnings equations. This study therefore confirms specifically for the male sample, that 

the different imputations exhibit some statistical differences from each other, however many of 

these can be ascribed to methodological strategy. Overall, for males, traditional Mincerian models 

can be modelled with confidence by any method : some other coefficients might fail rigorous 

statistical tests, though the intuitive results show that they are economically similar. 

 

6.5 Robust or Bootstrapped Confidence Intervals? 
 

Figure 3 investigates confidence intervals, given the applied corrections: Male midpoint estimates 

are chosen to illustrate conclusions, as the interval regression cannot be readily implemented with 

a Heckman covariance structure. The most apparent feature is that the Heckman intervals are the 

broadest. The bootstrap and robust intervals are fairly close to each other in length. While some 

bootstrapped intervals exhibit an improvement in efficiency (compared to the robust intervals), 

this is only very conclusive in the case of Education; many other cases deliver no efficiency gains, 

and in some instances the robust intervals are the most efficient. 

 

As Hill et al (2003: 19) conclude, work on large samples with little censoring produces 

satisfactory conclusions when the usual Heckit covariance matrix is combined with bootstrap 

estimation. Smaller samples with extensive censoring require heteroskedasticity corrected 

covariance forms in conjunction with bootstrap techniques. This sample can therefore be seen as 

relatively unscathed by censoring and finite size, and may even perform well without bootstrap 

estimates (but still require a form of correction). The efficiency gains from corrections are 

notable, however the additional gains from bootstrapping are limited. Judged in the light that this 
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dataset appears to be largely unaffected by censoring, it would be logical to conclude that the 

influence of imputed values play a less critical role. It is therefore important to undergo pre-

testing to establish whether censoring is a significant problem: in this case it is necessary to 

establish whether imputations will accord different information to the sample, and steps to 

achieve greater efficiency are required (to avoid non-rejection of an invalid hypothesis). 

Bootstrapping is advocated with a correction incorporated in the procedure, as emphasised by 

Hill et al (2003: 19). 

 

The advances in software are indicative of the general consensus as to the suitability of various 

confidence intervals and standard errors. STATA9.0’s built-in Heckit 2-step procedure is no 

longer directly compatible with robust corrections: should these be desired, the Inverse Mills 

Ratio needs to be obtained manually and included in an earnings regression. However, the 

Heckman structure is still available (presumably to stay in line with the original theory) for 

computational ease and because robust modifications have not improved the overall outlook to 

the extent to which bootstrapping has. Statistics by the latter method are now directly 

computable within the procedure: this is deemed the most preferable, as it doesn’t only provide 

“half” a correction in seriously censored samples. The trade-off is, however, computational time. 
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Figure 3 Comparison of Coefficients Magnitudes and 95% Confidence Intervals (Male Midpoint Estimates) 
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7 Conclusion 
 
While the specific requirements of bracket data and sample selection pose obstacles before one 

can commence with economic interpretation, one need not lean on these as an excuse to call data 

“bad”. Adler et al (1998: ix) also define the perceptions of “good data” as those which 

researchers are readily able to use: note that it is labelled in terms of perceptions. Have the methods 

of this study altered views of datasets? It has been shown that particularly for LFS September 

2003, parameters exhibit reasonable stability, regardless of which techniques are applied. While 

certain statistical differences are apparent (and potential reasons can be pinpointed), the fact that 

magnitudes’ confidence interval estimates overlap in all cases, reveals that for the purposes of 

economic interpretation, a satisfactory compromise has been reached. Ziliak and McCloskey 

(2004) in fact warn econometricians not to attach the entire emphasis of conclusions to statistical 

results, when economic magnitude is of importance. In this case, the economic quantities are for 

all intents and purposes the same, regardless of whether new econometric techniques (interval 

regressions) or traditional imputation methods are applied. It should be emphasised that these 

properties are specific to this dataset, but that kernel density estimation can quickly reveal the 

validity of any proposed imputation for any dataset. 

 

Developments in thinking on impure variance-covariance structures have also improved accuracy 

in the earnings function framework. Whilst simple asymptotic corrections do not provide a rosier 

outlook, the sacrifice of computational time by bootstrapping is certainly a price worth paying. 

The lack of distributional assumptions removes any undue restrictions in inference, and 

underlines the cause for simulations in the evaluation of models. The small changes in efficiency, 

however, suggest that this dataset is not unduly affected by censored values – a possible reason 

why different imputations do not swing the results. 

 

The tools in this shed therefore prove themselves to be sharp for the purposes of economic 

evaluation. The simplest methods are interval regressions, midpoint imputations and lognormal 

mean imputations (in that order). The estimation of the α parameter for the Pareto tail is 

somewhat restrictive. The suitability of traditional methods (should they be employed) should be 

confirmed before potentially biased results are held to depict true magnitudes.  

 

The validation of these methods certainly does translate perceptions of “bad data” to “good 

data”, and researchers should feel confident to apply them until further advances are made. These 

tools capacitate researchers to analyse the South African labour market; they enable a depiction 
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of reality, and add value to the Mincerian-Heckman framework. Economists can therefore make 

more accurate recommendations, despite the fact that they are supplied with information which 

is not conventionally easy to process. In effect, interval-coding should not deter labour market 

analysis, but add significant information and lead to improved practice in econometrics.  
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APPENDIX 1 – ESTIMATION RESULTS 
Single Equation 

Table 3 Automated Heckit Estimates with Heckman Covariance Matrix – Single Equation 

Single Equation Heckit Estimates with Heckman Covariance Matrix 

  Midpoint Lognormal Midpoint-Pareto 

Selection (λλλλ) -1.39674 -1.382957 -1.390056 

  (-1.449898   -1.343582)** (-1.43559   -1.330324)** (-1.442959   -1.337152)** 
Experience -0.00635 -0.00593 -0.00632 

  (-0.01197 - -0.00072)* (-0.01151 - -0.00036)* (-0.01192 - -0.00072)* 

Experience2 -0.00005 -0.00005 -0.00004 

  (-0.00015 - 0.00006) (-0.00015 - 0.00005) (-0.00015 - 0.00006) 
Education 0.00299 0.0028 0.00352 

  (-0.01143 - 0.01740) (-0.01147 - 0.01707) (-0.01082 - 0.01787) 

Education2 0.00483 0.00484 0.00479 

  (0.00382 - 0.00585)** (0.00384 - 0.00585)** (0.00378 - 0.00580)** 
White 0.6585 0.65693 0.65598 

  (0.59961 - 0.71739)** (0.59862 - 0.71524)** (0.59737 - 0.71459)** 
Coloured 0.10808 0.10575 0.1084 

  (0.06244 - 0.15371)** (0.06056 - 0.15093)** (0.06298 - 0.15382)** 
Indian 0.43079 0.42977 0.42989 

  (0.34135 - 0.52023)** (0.34121 - 0.51832)** (0.34088 - 0.51890)** 
Urban 0.16921 0.16761 0.16874 

  (0.13652 - 0.20190)** (0.13524 - 0.19998)** (0.13620 - 0.20127)** 
Union  0.52641 0.52493 0.52609 

  (0.48953 - 0.56330)** (0.48841 - 0.56145)** (0.48938 - 0.56280)** 
log(Hours) 0.33222 0.32978 0.33309 

  (0.29958 - 0.36487)** (0.29746 - 0.36211)** (0.30060 - 0.36558)** 
Constant 6.10502 6.09994 6.09461 

  (5.93144 - 6.27861)** (5.92807 - 6.27182)** (5.92186 - 6.26737)** 
Observations 38469 38469 38469 
95% confidence intervals in parentheses   
* significant at 5%; ** significant at 1%   
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Table 4  Manual Weighted Heckman 2-step with Robust Confidence Intervals - Single Equation 

Single Equation  Manual Weighted Heckman 2-step with Robust Confidence Intervals 

  Midpoint Lognormal Midpoint-Pareto Interval Regression 

Selection (λλλλ) -1.40195 -1.38915 -1.39409 -1.39007 

  (-1.44711 - -1.35678)** (-1.43438 - -1.34392)** (-1.43970 - -1.34847)** (-1.43485 - -1.34530)** 
Experience -0.00536 -0.00497 -0.0053 -0.00493 

  (-0.00939 - -0.00134)** (-0.00899 - -0.00095)* (-0.00934 - -0.00125)* (-0.00892 - -0.00094)* 

Experience2 -0.00005 -0.00006 -0.00005 -0.00006 

  (-0.00013 - 0.00002) (-0.00013 - 0.00001) (-0.00013 - 0.00002) (-0.00013 - 0.00001) 
Education 0.00041 0.00005 0.00091 0.0001 

  (-0.01083 - 0.01166) (-0.01114 - 0.01125) (-0.01038 - 0.01220) (-0.01108 - 0.01129) 

Education2 0.00513 0.00515 0.00509 0.00517 

  (0.00437 - 0.00589)** (0.00439 - 0.00591)** (0.00433 - 0.00586)** (0.00441 - 0.00593)** 
White 0.65156 0.65098 0.64968 0.6516 

  (0.61163 - 0.69149)** (0.61068 - 0.69128)** (0.60941 - 0.68995)** (0.61180 - 0.69139)** 
Coloured 0.10754 0.10501 0.10775 0.10615 

  (0.07904 - 0.13604)** (0.07672 - 0.13330)** (0.07938 - 0.13612)** (0.07801 - 0.13428)** 
Indian 0.38217 0.38115 0.38069 0.38241 

  (0.32938 - 0.43495)** (0.32882 - 0.43347)** (0.32826 - 0.43312)** (0.33039 - 0.43444)** 
Urban 0.19482 0.19256 0.19477 0.19331 

  (0.16870 - 0.22095)** (0.16665 - 0.21846)** (0.16860 - 0.22093)** (0.16749 - 0.21913)** 
Union  0.4755 0.47436 0.47541 0.4751 

  (0.45142 - 0.49958)** (0.45035 - 0.49837)** (0.45138 - 0.49945)** (0.45119 - 0.49902)** 
log(Hours) 0.33348 0.33117 0.33442 0.33296 

  (0.30154 - 0.36542)** (0.29964 - 0.36271)** (0.30244 - 0.36641)** (0.30123 - 0.36469)** 
Constant 6.10884 6.10509 6.09662 6.09585 

  (5.95212 - 6.26555)** (5.94913 - 6.26106)** (5.93879 - 6.25445)** (5.94005 - 6.25165)** 
Observations 21389 21389 21389 21389 
R-Squared 0.64348 0.64418 0.64192  
Robust 95% confidence intervals in parentheses   
* significant at 5%; ** significant at 1% 
Heckit Interval Regression is Estimated Manually   
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Table 5 Bootstrapped Coefficients and Bias-Corrected Confidence Intervals - Single Equation 

Single Equation Heckit  with Bias-Corrected Bootstrapped Confidence Intervals 

 Midpoint Lognormal Midpoint-Pareto Interval Regression 

Selection (λλλλ) -1.39674 0.00184860   -1.38296 0.00197050   -1.39006 0.00220980   -1.38312 -0.00002210   
  -1.44543 -1.35281500 * -1.43047 -1.33908100 * -1.43989 -1.34681000 * -1.42282 -1.34401800 * 
Experience -0.00635 0.00009280   -0.00593 0.00009110   -0.00632 0.00011080   -0.00581 -0.00000184   
  -0.01082 -0.00202280 * -0.01039 -0.00174700 * -0.01084 -0.00228590 * -0.00923 -0.00249910 * 

Experience2 -0.00005 -0.00000100   -0.00005 -0.00000099   -0.00004 -0.00000113   -0.00005 0.00000008   
  -0.00012 0.00003520   -0.00013 0.00003100   -0.00012 0.00003630   -0.00011 0.00001150   
Education 0.00299 -0.00000391   0.00280 -0.00008210   0.00352 -0.00009470   0.00278 -0.00004400   
  -0.00669 0.01226570   -0.00658 0.01195850   -0.00580 0.01333450   -0.00644 0.01188870   

Education2 0.00483 0.00000656   0.00484 0.00001090   0.00479 0.00001390   0.00487 0.00000221   
  0.00419 0.00548490 * 0.00421 0.00547930 * 0.00412 0.00543380 * 0.00424 0.00549840 * 
White 0.65850 0.00064230   0.65693 0.00096840   0.65598 0.00103880   0.65701 0.00012420   
  0.62054 0.69395800 * 0.61902 0.69318780 * 0.61760 0.69296080 * 0.62161 0.69181400 * 
Coloured 0.10808 0.00074160   0.10575 0.00057580   0.10840 0.00055990   0.10621 0.00001800   
  0.07589 0.13803500 * 0.07396 0.13611050 * 0.07709 0.13892610 * 0.08216 0.13072280 * 
Indian 0.43079 0.00015840   0.42977 0.00024750   0.42989 0.00037530   0.42952 0.00040990   
  0.38095 0.48324900 * 0.37798 0.48207390 * 0.37622 0.48033590 * 0.38012 0.47962090 * 
Urban 0.16921 0.00013380   0.16761 0.00025610   0.16874 -0.00013580   0.16915 0.00001730   
  0.14593 0.19191510 * 0.14504 0.19009250 * 0.14587 0.19220200 * 0.14739 0.19043960 * 
Union  0.52641 0.00032140   0.52493 0.00028260   0.52609 0.00054150   0.52553 0.00008000   
  0.50179 0.55040040 * 0.50164 0.54855200 * 0.50156 0.54934850 * 0.50438 0.54657040 * 
log(Hours) 0.33222 -0.00006370   0.32978 -0.00000853   0.33309 -0.00006620   0.33204 -0.00001680   
  0.30221 0.36187270 * 0.30123 0.35885100 * 0.30408 0.36198440 * 0.30331 0.36184630 * 
Constant 6.10502 -0.00312870   6.09994 -0.00336870   6.09461 -0.00361110   6.08765 0.00020800   
  5.95690 6.25628700 * 5.95559 6.25185100 * 5.95267 6.24959100 * 5.94481 6.22661000 * 

Observations 38469 38469 38469 21389 

Replications 10000 10000 10000 10000 
95% Bias-Corrected Confidence Intervals: *significant at 5%        
Coefficients: Observed with bias in italics 
Heckit Interval Regression is Estimated Manually          
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Table 6 Does Bootstrapped Confidence Interval Contain  other methods' bootstrapped coefficients? - Single Equation 

 

Conf. Interval Interval Regression Midpoint Lognormal Midpoint-Pareto 

Coefficient Midpoint Lognormal Midpoint-Pareto Interval Regression Lognormal Midpoint-Pareto Interval Regression Midpoint Midpoint-Pareto Interval Regression Midpoint Lognormal 

Selection (λλλλ) √ √ √ √ √ √ √ √ √ √ √ √ 

Experience √ √ √ √ √ √ √ √ √ √ √ √ 

Experience
2
 √ √ √ √ √ √ √ √ √ √ √ √ 

Education √ √ √ √ √ √ √ √ √ √ √ √ 

Education
2
 √ √ √ √ √ √ √ √ √ √ √ √ 

White √ √ √ √ √ √ √ √ √ √ √ √ 

Coloured √ √ √ √ √ √ √ √ √ √ √ √ 

Indian √ √ √ √ √ √ √ √ √ √ √ √ 

Urban √ √ √ √ √ √ √ √ √ √ √ √ 

Union  √ √ √ √ √ √ √ √ √ √ √ √ 

log(Hours) √ √ √ √ √ √ √ √ √ √ √ √ 

Constant √ √ √ √ √ √ √ √ √ √ √ √ 

 

Figure 4 Comparison of Bootstrapped Coefficients and Confidence Intervals - Single Equation 
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Female Equation 
Table 7 Automated Heckit Estimates with Heckman Covariance Matrix – Female Equation 

Female Equation Heckit Estimates with Heckman Covariance Matrix 

  Midpoint Lognormal Midpoint-Pareto 

Selection (λλλλ) -1.382899 -1.365195 -1.375433 

  (-1.461246 - -1.304553)** (-1.442538 -  -1.287851)** ( -1.453356  -  -1.29751)** 
Experience -0.01533 -0.01473 -0.01525 

  (-0.02357 - -0.00710)** (-0.02286 - -0.00661)** (-0.02344 - -0.00707)** 

Experience2 -0.00005 -0.00005 -0.00005 

  (-0.00020 - 0.00010) (-0.00020 - 0.00009) (-0.00020 – 0.00010) 
Education 0.00225 0.0018 0.00297 

  (-0.01835 - 0.02285) (-0.01853 - 0.02213) (-0.01752 – 0.02345) 

Education2 0.00469 0.00473 0.00464 

  (0.00325 - 0.00614)** (0.00330 - 0.00616)** (0.00320 - 0.00608)** 
White 0.52893 0.52733 0.52702 

  (0.44256 - 0.61530)** (0.44207 - 0.61260)** (0.44112 - 0.61293)** 
Coloured 0.07995 0.07768 0.08139 

  (0.01336 - 0.14654)* (0.01194 - 0.14341)* (0.01517 - 0.14762)* 
Indian 0.39571 0.39495 0.39576 

  (0.25712 - 0.53430)** (0.25813 - 0.53176)** (0.25792 - 0.53361)** 
Urban 0.18138 0.17985 0.18164 

  (0.13477 - 0.22798)** (0.13384 - 0.22586)** (0.13528 - 0.22799)** 
Union  0.65421 0.65222 0.65403 

  (0.59697 - 0.71144)** (0.59572 - 0.70872)** (0.59711 - 0.71096)** 
log(Hours) 0.30446 0.30179 0.30478 

  (0.26272 - 0.34619)** (0.26059 - 0.34299)** (0.26327 - 0.34629)** 
Constant 6.33881 6.32929 6.3269 

  (6.09580 - 6.58182)** (6.08939 - 6.56919)** (6.08520 - 6.56860)** 
Observations 19212 19212 19212 
95% confidence intervals in parentheses   
* significant at 5%; ** significant at 1%   
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Table 8 Manual Weighted Heckman 2-step with Robust Confidence Intervals - Female Equation 

Female Equation  Manual Weighted Heckman 2-step with Robust Confidence Intervals 

  Midpoint Lognormal Midpoint-Pareto Interval Regression 

Selection (λλλλ) -1.40195 -1.38915 -1.39409 -1.39007 

  (-1.44711 - -1.35678)** (-1.43438 - -1.34392)** (-1.43970 - -1.34847)** (-1.43485 - -1.34530)** 
Experience -0.00536 -0.00497 -0.0053 -0.00493 

  (-0.00939 - -0.00134)** (-0.00899 - -0.00095)* (-0.00934 - -0.00125)* (-0.00892 - -0.00094)* 

Experience2 -0.00005 -0.00006 -0.00005 -0.00006 

  (-0.00013 - 0.00002) (-0.00013 - 0.00001) (-0.00013 - 0.00002) (-0.00013 - 0.00001) 
Education 0.00041 0.00005 0.00091 0.0001 

  (-0.01083 - 0.01166) (-0.01114 - 0.01125) (-0.01038 - 0.01220) (-0.01108 - 0.01129) 

Education2 0.00513 0.00515 0.00509 0.00517 

  (0.00437 - 0.00589)** (0.00439 - 0.00591)** (0.00433 – 0.00586)** (0.00441 - 0.00593)** 
White 0.65156 0.65098 0.64968 0.6516 

  (0.61163 - 0.69149)** (0.61068 - 0.69128)** (0.60941 – 0.68995)** (0.61180 - 0.69139)** 
Coloured 0.10754 0.10501 0.10775 0.10615 

  (0.07904 - 0.13604)** (0.07672 - 0.13330)** (0.07938 – 0.13612)** (0.07801 - 0.13428)** 
Indian 0.38217 0.38115 0.38069 0.38241 

  (0.32938 - 0.43495)** (0.32882 - 0.43347)** (0.32826 – 0.43312)** (0.33039 - 0.43444)** 
Urban 0.19482 0.19256 0.19477 0.19331 

  (0.16870 - 0.22095)** (0.16665 - 0.21846)** (0.16860 – 0.22093)** (0.16749 - 0.21913)** 
Union  0.4755 0.47436 0.47541 0.4751 

  (0.45142 - 0.49958)** (0.45035 - 0.49837)** (0.45138 – 0.49945)** (0.45119 - 0.49902)** 
log(Hours) 0.33348 0.33117 0.33442 0.33296 

  (0.30154 - 0.36542)** (0.29964 - 0.36271)** (0.30244 – 0.36641)** (0.30123 - 0.36469)** 
Constant 6.10884 6.10509 6.09662 6.09585 

  (5.95212 - 6.26555)** (5.94913 - 6.26106)** (5.93879 – 6.25445)** (5.94005 - 6.25165)** 
Observations 21389 21389 21389 21389 
R-Squared 0.64348 0.64418 0.64192  
 Robust 95% confidence intervals in parentheses  Heckit Interval Regression 
 * significant at 5%; ** significant at 1%  Estimated Manually 
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Table 9 Bootstrapped Coefficients and Bias-Corrected Confidence Intervals - Female Equation 

Female Equation Heckit  with Bias-Corrected Bootstrapped Confidence Intervals 

 Midpoint Lognormal Midpoint-Pareto Interval Regression 

Selection (λλλλ) -1.38290 0.00497420   -1.37543 0.00463520   -1.37543 0.00463520   -1.36658 0.00009750   
  -1.45562 -1.31971700 * -1.44881 -1.31243300 * -1.44881 -1.31243300 * -1.42543 -1.30664700 * 
Experience -0.01533 0.00023180   -0.01525 0.00017770   -0.01525 0.00017770   -0.01448 -0.00000490   
  -0.02232 -0.00910560 * -0.02221 -0.00895280 * -0.02221 -0.00895280 * -0.01954 -0.00932620 * 

Experience2 -0.00005 -0.00000226   -0.00005 -0.00000126   -0.00005 -0.00000126   -0.00006 -0.00000008   
  -0.00016 0.00007860   -0.00017 0.00007380   -0.00017 0.00007380   -0.00015 0.00003240   
Education 0.00225 -0.00017450   0.00297 -0.00002160   0.00297 -0.00002160   0.00212 -0.00013810   
  -0.01142 0.01659620   -0.01157 0.01714570   -0.01157 0.01714570   -0.01166 0.01548420   

Education2 0.00469 0.00002370   0.00464 0.00001500   0.00464 0.00001500   0.00474 0.00000976   
  0.00370 0.00562200 * 0.00368 0.00561290 * 0.00368 0.00561290 * 0.00379 0.00571150 * 
White 0.52893 0.00199390   0.52702 0.00210210   0.52702 0.00210210   0.52820 0.00017110   
  0.47155 0.58382830 * 0.46906 0.57941260 * 0.46906 0.57941260 * 0.47541 0.58163550 * 
Coloured 0.07995 0.00124020   0.08139 0.00111680   0.08139 0.00111680   0.07834 -0.00027780   
  0.02969 0.12753430 * 0.03195 0.12873040 * 0.03195 0.12873040 * 0.04078 0.11707000 * 
Indian 0.39571 0.00111150   0.39576 0.00155250   0.39576 0.00155250   0.39385 0.00056500   
  0.31238 0.47745590 * 0.31321 0.47697100 * 0.31321 0.47697100 * 0.31534 0.47182650 * 
Urban 0.18138 0.00057890   0.18164 0.00041330   0.18164 0.00041330   0.18089 -0.00001040   
  0.14435 0.21571460 * 0.14588 0.21634720 * 0.14588 0.21634720 * 0.14782 0.21423220 * 
Union  0.65421 0.00101070   0.65403 0.00100190   0.65403 0.00100190   0.65298 0.00003890   
  0.61503 0.69212850 * 0.61377 0.69218700 * 0.61377 0.69218700 * 0.61689 0.68803880 * 
log(Hours) 0.30446 -0.00011930   0.30478 -0.00018850   0.30478 -0.00018850   0.30627 -0.00016530   
  0.26653 0.34091150 * 0.26774 0.34171270 * 0.26774 0.34171270 * 0.26979 0.34337560 * 
Constant 6.33881 -0.00848380   6.32690 -0.00806020   6.32690 -0.00806020   6.30680 0.00099480   

 6.14141 6.55294400 * 6.12855 6.54574100 * 6.12855 6.54574100 * 6.10783 6.49363600 * 

Observations 19212 19212 19212 9454 

Replications 10000 10000 10000 10000 
95% Bias-Corrected Confidence Intervals: *significant at 5%        
Coefficients: Observed with bias in italics 
Heckit Interval Regression Estimated Manually         
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Table 10 Does Bootstrapped Confidence Interval Contain  other methods' bootstrapped coefficients? Female Equation 

 
Conf Interval Interval Regression Midpoint Lognormal Midpoint-Pareto 

Coefficient Midpoint Lognormal Midpoint-Pareto Interval Regression Lognormal Midpoint-Pareto Interval Regression Midpoint Midpoint-Pareto Interval Regression Midpoint Lognormal 

Selection (λλλλ) √ √ √ √ √ √ √ √ √ √ √ √ 

Experience √ √ √ √ √ √ √ √ √ √ √ √ 

Experience2 √ √ √ √ √ √ √ √ √ √ √ √ 

Education √ √ √ √ √ √ √ √ √ √ √ √ 

Education2 √ √ √ √ √ √ √ √ √ √ √ √ 

White √ √ √ √ √ √ √ √ √ √ √ √ 

Coloured √ √ √ √ √ √ √ √ √ √ √ √ 

Indian √ √ √ √ √ √ √ √ √ √ √ √ 

Urban √ √ √ √ √ √ √ √ √ √ √ √ 

Union  √ √ √ √ √ √ √ √ √ √ √ √ 

log(Hours) √ √ √ √ √ √ √ √ √ √ √ √ 

Constant √ √ √ √ √ √ √ √ √ √ √ √ 

Figure 5 Comparison of Bootstrapped Coefficients and Confidence Intervals – Female Equation 
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Male Equation 

Table 11 Automated Heckit Estimates with Heckman Covariance Matrix – Male Equation 

Male Equation Heckit Estimates with Heckman Covariance Matrix 

  Midpoint Lognormal Midpoint-Pareto 

Selection (λλλλ) -1.29163 -1.283029 -1.286555 

  (-1.357492 -  -1.225767)** (-1.348453   -1.217606)** (-1.352159   -1.220951)** 
Experience 0.00749 0.00764 0.00744 

  (0.00033 - 0.01464)* (0.00053 - 0.01474)* (0.00032 - 0.01457)* 

Experience2 -0.00012 -0.00012 -0.00012 

  (-0.00025 - 0.00001) (-0.00025 - 0.00001) (-0.00025 - 0.00001) 
Education 0.00093 0.00099 0.00133 

  (-0.01782 - 0.01967) (-0.01763 - 0.01961) (-0.01734 - 0.02000) 

Education2 0.0054 0.00539 0.00537 

  (0.00409 - 0.00672)** (0.00408 - 0.00670)** (0.00406 - 0.00668)** 
White 0.79247 0.79064 0.78908 

  (0.71850 - 0.86645)** (0.71716 - 0.86412)** (0.71540 - 0.86276)** 
Coloured 0.1437 0.14137 0.14297 

  (0.08562 - 0.20177)** (0.08368 - 0.19905)** (0.08512 - 0.20081)** 
Indian 0.41882 0.41781 0.41723 

  (0.30965 - 0.52799)** (0.30937 - 0.52625)** (0.30849 - 0.52597)** 
Urban 0.20168 0.19989 0.20061 

  (0.15891 - 0.24444)** (0.15741 - 0.24237)** (0.15801 - 0.24321)** 
Union  0.40223 0.40108 0.40157 

  (0.35657 - 0.44789)** (0.35572 - 0.44643)** (0.35609 - 0.44706)** 
log(Hours) 0.19821 0.19682 0.19977 

  (0.14922 - 0.24720)** (0.14815 - 0.24548)** (0.15097 - 0.24857)** 
Constant 6.29691 6.29434 6.2878 

  (6.05840 - 6.53541)** (6.05743 - 6.53126)** (6.05024 - 6.52537)** 
Observations 19257 19257 19257 
95% confidence intervals in parentheses   
* significant at 5%; ** significant at 1%   
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Table 12 Manual Weighted Heckman 2-step with Robust Confidence Intervals - Male Equation 

 
Male Equation  Manual Weighted Heckman 2-step with Robust Confidence Intervals 

  Midpoint Lognormal Midpoint-Pareto Interval Regression 

Selection (λλλλ) -1.29626 -1.28726 -1.29003 -1.28487 

  (-1.35607 - -1.23645)** (-1.34698 - -1.22753)** (-1.35025 - -1.22980)** (-1.34396 - -1.22578)** 
Experience 0.00697 0.00717 0.00698 0.00716 

  (0.00167 - 0.01227)** (0.00187 - 0.01247)** (0.00165 - 0.01230)* (0.00192 - 0.01241)** 

Experience2 -0.0001 -0.0001 -0.0001 -0.0001 

  (-0.00020 - -0.00000)* (-0.00020 - -0.00001)* (-0.00020 - -0.00000)* (-0.00019 - -0.00001)* 
Education -0.00276 -0.00292 -0.00262 -0.0029 

  (-0.01692 - 0.01141) (-0.01710 - 0.01126) (-0.01691 - 0.01167) (-0.01703 - 0.01122) 

Education2 0.0057 0.00571 0.00569 0.00573 

  (0.00474 - 0.00667)** (0.00474 - 0.00668)** (0.00471 - 0.00667)** (0.00477 - 0.00670)** 
White 0.78915 0.7884 0.78669 0.78861 

  (0.73852 - 0.83977)** (0.73695 - 0.83985)** (0.73524 - 0.83813)** (0.73785 - 0.83938)** 
Coloured 0.15826 0.15511 0.15702 0.1556 

  (0.12167 - 0.19484)** (0.11878 - 0.19145)** (0.12068 - 0.19336)** (0.11954 - 0.19167)** 
Indian 0.37119 0.36956 0.36808 0.37145 

  (0.30073 - 0.44166)** (0.29987 - 0.43926)** (0.29813 - 0.43803)** (0.30246 - 0.44045)** 
Urban 0.21537 0.21374 0.21497 0.21502 

  (0.18310 - 0.24764)** (0.18170 - 0.24579)** (0.18264 - 0.24730)** (0.18320 - 0.24683)** 
Union  0.36268 0.36181 0.36222 0.36244 

  (0.33269 - 0.39267)** (0.33183 - 0.39179)** (0.33220 - 0.39225)** (0.33264 - 0.39225)** 
log(Hours) 0.21053 0.209 0.21212 0.20755 

  (0.15885 - 0.26221)** (0.15799 - 0.26001)** (0.16033 - 0.26391)** (0.15667 - 0.25843)** 
Constant 6.28658 6.28405 6.27631 6.28496 

  (6.05311 - 6.52005)** (6.05234 - 6.51577)** (6.04135 - 6.51127)** (6.05494 - 6.51499)** 
Observations 11935 11935 11935 11935 
R-Squared 0.63723 0.63716 0.63499   
 Robust 95% confidence intervals in parentheses   
 * significant at 5%; ** significant at 1%   
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Table 13 Bootstrapped Coefficients and  Bias-Corrected Confidence Intervals - Male Equation 

 Heckit  with Bias-Corrected Bootstrapped Confidence Intervals 

Male Equation Midpoint Lognormal Midpoint-Pareto Interval Regression 

Selection (λλλλ) -1.29163 0.00356110   -1.28303 0.00406230   -1.28656 0.00373480   -1.28025 0.00050860   
  -1.35583 -1.23578800 * -1.34647 -1.22736500 * -1.35052 -1.22941200 * -1.33263 -1.23107200 * 
Experience 0.00749 0.00022050   0.00764 0.00018230   0.00744 0.00013360   0.00769 0.00003460   
  0.00169 0.01287170 * 0.00181 0.01284620 * 0.00163 0.01298550 * 0.00324 0.01217600 * 

Experience2 -0.00012 -0.00000328   -0.00012 -0.00000194   -0.00012 -0.00000136   -0.00012 -0.00000036   
  -0.00022 -0.00001550 * -0.00022 -0.00001570 * -0.00022 -0.00001360 * -0.00020 -0.00004120 * 
Education 0.00093 -0.00006410   0.00099 -0.00009440   0.00133 0.00001850   0.00089 0.00003370   
  -0.01092 0.01300720   -0.01068 0.01333040   -0.01093 0.01314370   -0.01080 0.0123598   

Education2 0.00540 0.00001040   0.00539 0.00001570   0.00537 0.00000998   0.00543 -0.00000109   
  0.00455 0.00623050 * 0.00453 0.00620620 * 0.00451 0.00622140 * 0.00462 0.00625170 * 
White 0.79247 0.00150590   0.79064 0.00139130   0.78908 0.00133520   0.79044 0.00037000   
  0.74255 0.83738190 * 0.74094 0.83604320 * 0.74151 0.83614800 * 0.74596 0.83618370 * 
Coloured 0.14370 0.00060970   0.14137 0.00048790   0.14297 0.00073990   0.14144 0.00003190   
  0.10440 0.18147460 * 0.10380 0.17825120 * 0.10390 0.18134980 * 0.10990 0.17276220 * 
Indian 0.41882 0.00125180   0.41781 0.00009870   0.41723 0.00109250   0.41781 0.00081330   
  0.34981 0.48702490 * 0.35016 0.48487370 * 0.34938 0.48291720 * 0.35245 0.48091700 * 
Urban 0.20168 0.00023240   0.19989 0.00023170   0.20061 0.00017900   0.20212 0.00006240   
  0.17164 0.22995910 * 0.17149 0.22873640 * 0.17223 0.22901120 * 0.17546 0.22801790 * 
Union  0.40223 0.00078830   0.40108 0.00095750   0.40157 0.00072190   0.40186 0.00010990   
  0.37281 0.43085780 * 0.37051 0.42987110 * 0.37229 0.42954570 * 0.37545 0.42865650 * 
log(Hours) 0.19821 -0.00014240   0.19682 -0.00031680   0.19977 -0.00076130   0.19574 -0.00024290   
  0.15035 0.24649110 * 0.14957 0.24430740 * 0.15081 0.24688660 * 0.14823 0.24264990 * 
Constant 6.29691 -0.00544380   6.29434 -0.00502690   6.28780 -0.00277320   6.29316 -0.00024820   

 6.07589 6.52523200 * 6.07372 6.51712200 * 6.07014 6.52045400 * 6.08686 6.50458500 * 

Observations 19257 19257 19257 11935 

Replications 10000 10000 10000 10000 
95% Bias-Corrected Confidence Intervals: *significant at 5%        
Coefficients: Observed with bias in italics 
Heckit Interval Regression Estimated Manually         
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Table 14 Does Bootstrapped Confidence Interval Contain  other methods' bootstrapped coefficients? Male Equation 

 

Conf Interval Interval Regression Midpoint Lognormal Midpoint-Pareto 

Coefficient Midpoint Lognormal Midpoint-Pareto Interval Regression Lognormal Midpoint-Pareto Interval Regression Midpoint Midpoint-Pareto Interval Regression Midpoint Lognormal 

Selection (λλλλ) √ √ √ √ √ √ √ √ √ √ √ √ 

Experience √ √ √ √ √ √ √ √ √ √ √ √ 

Experience2 √ √ √ √ √ √ √ √ √ √ √ √ 

Education √ √ √ √ √ √ √ √ √ √ √ √ 

Education2 √ √ √ √ √ √ √ √ √ √ √ √ 

White √ √ √ √ √ √ √ √ √ √ √ √ 

Coloured √ √ √ √ √ √ √ √ √ √ √ √ 

Indian √ √ √ √ √ √ √ √ √ √ √ √ 

Urban √ √ √ √ √ √ √ √ √ √ √ √ 

Union  √ √ √ √ √ √ √ √ √ √ √ √ 

log(Hours) √ √ √ √ √ √ √ √ √ √ √ √ 

Constant √ √ √ √ √ √ √ √ √ √ √ √ 

Figure 6 Comparison of Bootstrapped Coefficients and Confidence Intervals – Male Equation 
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Table 15 Selection Probit Equations 

 
Selection Equation Single Female Male 

  Broad Employment Broad Employment Broad Employment 

Age 0.08614 0.06987 0.1048 

  (0.07722 - 0.09506)** (0.05676 - 0.08297)** (0.09221 - 0.11739)** 

Age2 -0.0006 -0.00029 -0.00095 

  (-0.00072 - -0.00049)** (-0.00047 - -0.00012)** (-0.00111 - -0.00078)** 

Eastern Cape -0.53382 -0.50822 -0.54569 

  (-0.59603 - -0.47161)** (-0.59411 - -0.42232)** (-0.63755 - -0.45382)** 

Northern Cape -0.22348 -0.36838 -0.08031 

  (-0.30333 - -0.14362)** (-0.48197 - -0.25480)** (-0.19611 - 0.03549) 

Free State -0.35492 -0.52041 -0.17465 

  (-0.42200 - -0.28784)** (-0.61449 - -0.42633)** (-0.27395 - -0.07535)** 

KwaZulu-Natal -0.39592 -0.39192 -0.4163 

  (-0.45344 - -0.33839)** (-0.47190 - -0.31193)** (-0.50092 - -0.33168)** 
North West -0.5278 -0.62029 -0.46557 

  (-0.59269 - -0.46290)** (-0.71259 - -0.52800)** (-0.55951 - -0.37163)** 
Gauteng -0.58143 -0.60503 -0.58459 

  (-0.64123 - -0.52162)** (-0.68902 - -0.52103)** (-0.67199 - -0.49719)** 
Mpumalanga -0.34949 -0.4007 -0.2754 

  (-0.41498 - -0.28401)** (-0.49131 - -0.31010)** (-0.37256 - -0.17825)** 
Limpopo -0.61569 -0.64564 -0.56301 

  (-0.67982 - -0.55156)** (-0.73220 - -0.55908)** (-0.66122 - -0.46481)** 
#Children <6 -0.02623 -0.09231 0.0917 

  (-0.04612 - -0.00635)** (-0.11824 - -0.06638)** (0.05957 - 0.12382)** 
#Males 16-59 -0.09597 -0.12937 -0.17047 

  (-0.10973 - -0.08221)** (-0.15037 - -0.10838)** (-0.19213 - -0.14881)** 
#Females 16-59 -0.13195 -0.06721 -0.11139 

  (-0.14604 - -0.11786)** (-0.08744 - -0.04699)** (-0.13403 - -0.08875)** 
#Adults >60 -0.20539 -0.16163 -0.24322 

  (-0.23411 - -0.17667)** (-0.20170 - -0.12156)** (-0.28516 - -0.20129)** 
pc Household Income 0.00068 0.00055 0.00091 

  (0.00066 - 0.00070)** (0.00053 - 0.00058)** (0.00088 - 0.00095)** 

(pc Household Income)2 0 0 0 

  (-0.00000 - -0.00000)** (-0.00000 - -0.00000)** (-0.00000 - -0.00000)** 
Constant -1.72501 -1.63259 -1.88493 

  (-1.89237 - -1.55765)** (-1.87684 - -1.38833)** (-2.12378 - -1.64608)** 
Observations 38469 19212 19257 

Heckman Corrected 95% confidence intervals in parentheses  
* significant at 5%; ** significant at 1%   
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APPENDIX 2 – PARETO MEAN IMPUTATION 
 
Following West (1986: 665): 
First the conditional Pareto mean for the unbounded category is found: 

( )
( )
( )

~ ,

for y 0  and 01

for y<k                            0

where  is the lowest point for which Pareto tail is applicable and  is the shape parameter.

 Let  

α

α

α

α

≡

= ≤

   ≥ ≥ >−  =   



Y

Y Earnings

Y pareto k

F y

P Y y

k
k

y

k

a

( )
( )

be the lowerbound of the open category. Now:

1 ( ) for y 0  and 0

( , )
1

( )

( )
1             because 

( )

( )
1

1 ( )

1
1

1

1 for y 0  and 0

α

α

α

α

− ≥ ≥ ≥ >

≤ ≥
= −

≥

≤
= − ≥

≥

≤
= −

− ≤

= −
−

 
−  
 = − ≥ ≥ >
 
 
 

Y

Y

Y

F y Y a k

P Y y Y a

P Y a

P Y y
a k

P Y a

P Y y

P Y a

F y

F a

k

y
k

k

a

 



 57 

( )

( )

( )
1

1

1

for y 0  and 0

α

α

α α
α

α αα α

−

− −

⇒ ≥

 
−  
 =
 
 
 

= −
 
 
 

⇒ ≥

∂
 = ≥ ∂

= ≥ ≥ >

Y

Y

Y

F y Y a

k

y

k

a

y a
k

a

f y Y a

F y Y a
y

a y k

 

 

( )
ˆ ˆ

ˆ 1
ˆ

ˆUse the above and substitute the regression estimator of , namely ,  to obtain the conditional Pareto mean for the open category:
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Now a mean is calculated for the bounded categories, following the same procedure, where a and b are the upper and lower bounds respectively of the concerned category: 
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( )
ˆ

ˆ ˆ

ˆ

ˆ ˆ

ˆUse the above and substitute the regression estimator of , namely ,  to obtain the conditional Pareto mean for the bounded categories:
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This formula is similar to that in Whiteford & McGrath (1994: 83), but the form calculated here produces correct results, with the imputed mean falling within the 

specified boundaries. It should be noted that ˆ 1α >  to obtain a finite mean for the unbounded category (see …(1) above, which necessitates the condition). It is 

therefore evident that the coefficient observed on log(Y) in the regression below is in fact the negative of the Pareto coefficient.  

log logα= −P k Y  

The literature is not clear on this point, and results obtained differ slightly. However, when α̂  is used (without the negative sign), the imputed means which are obtained 

fall below the midpoint, as suggested by Seiver (1979: 230, 232). This also explains the suggestions by Whiteford & McGrath (1994: 83) and Gustavsson (2004:20) that 

the Pareto mean for the open category is in fact: 
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α
α

α

α
α
α

α

=
+

−
=

− +

=
−

pareto

pareto

y a

y

a

a

 



 60 

APPENDIX 3 – LOGNORMAL MEAN IMPUTATION 
 

A conditional mean of a normally distributed variable is found over a specified interval. Since the earnings variable is normally distributed following a log transformation, 

the original variable will assume a lognormal distribution. 
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ˆ ˆOnce estimators   of  and  of   are obtained by means of an interval regression with only a constant,  the preceding population

conditional mean can be used to impute conditional sample means to 

µ µ σ σ

normal

the brackets:

ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ

The untransformed  now assumes lognormal imputation.
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Hayashi (2000: 512) displays a specific case of this equation for , which can be applied to the open ended top category:
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normal

Similarly, for the lowest category:

a -  as  results from a log transformation of .
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APPENDIX 4 – SUMMARY OF IMPUTATIONS USED 
 

Table 16 Summary of Imputations Employed 

Summary of Categories and Imputations Used 
Midpoint-Pareto Imputation 

Earningsgroup Lowerbound Upperbound Midpoint Male Female 

Lognormal Mean 
Imputation 

2 0 199 100 100 100 123.97 

3 200 499 350 350 350 341.57 
4 500 999 750 750 750 723.18 

5 1,000 1,499 1250 1250 1250 1227.46 
6 1,500 2,499 2000 2000 2000 1930.13 

7 2,500 3,499 3000 3000 3000 2945.18 

8 3500 4499 4000 4000 4000 3954.46 
9 4500 5999 5250 5250 5250 5165.29 

10 6000 7999 7000 6816.60 6790.290062 6877.39 
11 8000 10999 9500 9196.55 9153.352468 9279.90 

12 11000 15999 13500 12908.71772 12825.95305 13032.55 

13 16000 29999 23000 20323.80838 19988.78293 20625.31 

14 30000 ∞ 33000 46071.99396 42272.83494 43884.41 

    µµµµ= 7.369894 
    

αααα= 2.866601 αααα= 3.444423 
σσσσ= 1.177352 

 
 
 

APPENDIX 5 -  PRELIMINARY TESTING BY KERNEL DENSITY 
ESTIMATION 
 
These methods follow Keswell and Poswell (2004: 854-855). Density plots of point data, data 

simulated according to a lognormal distribution (deemed to be the theoretical benchmark) and 

the imputed variables were drawn for comparative purposes. Two simulations were implemented: 

one for the point-reporting cohort, and another for the entire reporting population. Should the 

shapes of  these curves differ substantially, the Data Generating Process (DGP) is considered to 

be different in each case. 

 
First, a uniform random number generator was used to draw random U(0,1) samples for the 

respective cases. For each interval, a constant-only interval regression was run with the available 

log lower- and log upper bounds, as well as the respective logged point data, to establish the 

mean and standard deviation within each earnings group. This was executed in turn according to 

the ranges of both simulated variables mentioned above. A lognormal transformation was 

performed on the uniform random variables over each earnings bracket, with the respective 

associated means and standard deviations as follows: 
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The two simulated variables are now representative of theoretical DGP’s of the point data by 

itself, and the joint point-interval data, according to the assumption that income is lognormally 

distributed. To each variable concerned, a Kernel-Density estimate was applied, in order to 

approximate a distribution for the random variables: this smoothes the histogram of the 

concerned variable via a non-negative symmetric weighting function (Rice, 1988: 325): 
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where wh(x) is a scaled variation of the initial w(x). In this case, a Gaussian weight function was 

opted for: w(x) is the standard normal density, which implies  that wh(x) is a normal density with 

standard deviation h. This parameter represents the bandwidth of the smoother, and corresponds 

to the respective bin widths of the chosen histogram to be smoothed. As h is varied from a small 

magnitude to infinity, the obtained density changes from a rough (closer to the data) 

approximation, to a smoother, more drawn out density. The resultant estimated density fh which 

approximates f, the true density in question, is estimated from the samples as follows: 
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This provides a graphical method to ascertain whether point data and interval-coded data have 

different underlying DGP’s; proposed imputations can also be evaluated according to visual 

deviations.  
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APPENDIX 6 – MULTIVARIATE TESTING FRAMEWORK 
 
Rigorous testing was implemented by multivariate methods. This takes into account the 

dependency structures between the different equations specified. Within this framework interval 

regressions cannot be compared to the imputations, as this option has not been developed within 

multivariate regression. 

 

The model is set up as follows: 

 
 

 
 
This model is the multivariate regression. This too was estimated with bootstrap methods to 

obtain accurate covariance matrices, with 10000 repetitions. Consequently Wald Tests are 

performed (adapted from StataCorp, 2003: 238): 
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 Here a’ is a selection vector of 1’s and 0’s, which picks out the row (in other word the 

coefficients) of B to be tested. c' is the specific linear combination of equations to be tested: it 
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picks out the columns. For instance if one wishes to test whether β selection midpoint = β selection pareto choose 

a’ =[1,0,0,0,0,0,0,0,0,0,0,0] and c'=[1, -1, 0].  It is now evident that the covariances between the 

coefficients are also taken into account in the test statistic, to accommodate for the presence of 

dependent structures. This combination is tested for equality to  0 :qx1 and compared this to a 

χ2(q) critical value, where q is the number of linear combinations being tested simultaneously.  

This framework allows for individual coefficients to be compared, and can be developed to 

compare entire equations simultaneously. However, it should be noted that the significance level 

requires adjustment when simultaneous hypotheses are being tested. This is due to the fact that 

the individual hypotheses themselves are not independent of each other. As such, a Bonferroni 

adjustment has been executed on the p-values, which takes into account the number of linear 

hypotheses being tested.  

 

Table 17 Multivariate Tests - Single Equation 

 Hypotheses 
 (Equality of Individual Coefficients across equations, and entire equations) 

Midpoint =         
Midpoint-Pareto 

Midpoint = Lognormal 
Midpoint-Pareto= 

Lognormal Single Equation 

χ2 df Prob>χ2 χ2 df Prob>χ2 χ2 df Prob>χ2 
Selection 65.27 1 0.00000 * 151.12 1 0.00000 * 67.31 1 0.00000 * 
Experience 0.19 1 1.00000   21.11 1 0.00010 * 29.67 1 0.00000 * 

Experience2 1.87 1 1.00000   5.19 1 0.27300   12.68 1 0.00440 * 
Education 5.61 1 0.21380   0.47 1 1.00000   13.08 1 0.00360 * 

Education2 4.25 1 0.47110   0.26 1 1.00000   17.3 1 0.00040 * 
White 4.43 1 0.42330   2 1 1.00000   3.96 1 0.55970   
Coloured 1.13 1 1.00000   25.61 1 0.00000 * 44.65 1 0.00000 * 
Indian 0.63 1 1.00000   0.79 1 1.00000   0.03 1 1.00000   
Urban 2.18 1 1.00000   9.77 1 0.02130 * 6.63 1 0.12010   
Union 0.68 1 1.00000   12.18 1 0.00580 * 15.84 1 0.00080 * 
log(Hours) 8.26 1 0.04860 * 7.43 1 0.07710   14.62 1 0.00160 * 
Constant 19.06 1 0.00020 * 1.45 1 1.00000   2.03 1 1.00000   
                          
Joint 435.43 12 0.00000 * 1443.58 12 0.00000 * 834.4 12 0.00000 * 
Wald Tests, with Bonferroni adjusted p-values for dependent tests    
*reject  at a 5% level H0: coefficient in first equation = coefficient in second equation  
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Table 18 Multivariate Tests - Female Equation 

 Hypotheses 
 (Equality of Individual Coefficients across equations, and entire equations) 

Midpoint =         
Midpoint-Pareto 

Midpoint = Lognormal 
Midpoint-Pareto= 

Lognormal Female Equation 

χ2 df Prob>χ2 χ2 df Prob>χ2 χ2 df Prob>χ2 
Selection 43.82 1 0.00000 * 103.73 1 0.00000 * 60.1 1 0.00000 * 
Experience 1.12 1 1.00000   18.3 1 0.00020 * 18.35 1 0.00020 * 

Experience2 1.92 1 1.00000   3.94 1 0.56470   6.81 1 0.10850   
Education 12.36 1 0.00530 * 1.15 1 1.00000   9.49 1 0.02480 * 

Education2 7.04 1 0.09580   1.25 1 1.00000   13.91 1 0.00230 * 
White 2.66 1 1.00000   1.42 1 1.00000   0.15 1 1.00000   
Coloured 14.52 1 0.00170 * 8.44 1 0.04410 * 26.44 1 0.00000 * 
Indian 0 1 1.00000   0.59 1 1.00000   0.92 1 1.00000   
Urban 1.72 1 1.00000   3.25 1 0.85720   4.53 1 0.40060   
Union 0.19 1 1.00000   11.95 1 0.00660 * 12.42 1 0.00510 * 
log(Hours) 1.95 1 1.00000   4.53 1 0.40040   5.78 1 0.19430   
Constant 16.38 1 0.00060 * 2.35 1 1.00000   0.19 1 1.00000   
                          
Joint 377.16 12 0.00000 * 1190.75 12 0.00000 * 399.66 12 0.00000 * 
Wald Tests, with Bonferroni adjusted p-values for dependent tests    
*reject  at a 5% level H0: coefficient in first equation = coefficient in second equation 
 

Table 19 Multivariate Tests - Male Equation 

 

Hypotheses 
 (Equality of Individual Coefficients across equations, and entire equations) 

Midpoint =         
Midpoint-Pareto 

Midpoint = Lognormal 
Midpoint-Pareto= 

Lognormal 

Male Equation 

χ2 df Prob>χ2 χ2 df Prob>χ2 χ2 df Prob>χ2 
Selection 26.44 1 0.00000 * 46.49 1 0.00000 * 13.39 1 0.00300 * 
Experience 0.19 1 1.00000   1.65 1 1.00000   6.5 1 0.12970   

Experience2 1.34 1 1.00000   0.06 1 1.00000   2.49 1 1.00000   
Education 1.14 1 1.00000   0.03 1 1.00000   3.06 1 0.96490   

Education2 1.18 1 1.00000   0.21 1 1.00000   2.73 1 1.00000   
White 3.3 1 0.82920   1.24 1 1.00000   8.22 1 0.04980 * 
Coloured 2.62 1 1.00000   17.8 1 0.00030 * 14.11 1 0.00210 * 
Indian 0.84 1 1.00000   0.32 1 1.00000   0.3 1 1.00000   
Urban 4.18 1 0.49090   8.23 1 0.04940 * 2.49 1 1.00000   
Union 1.28 1 1.00000   3.95 1 0.56400   2.14 1 1.00000   
log(Hours) 6.27 1 0.14710   1.28 1 1.00000   6.85 1 0.10610   
Constant 6.45 1 0.13280   0.21 1 1.00000   1.88 1 1.00000   
                          
Joint 199.46 12 0.00000 * 746.72 12 0.00000 * 519.46 12 0.00000 * 
Wald Tests, with Bonferroni adjusted p-values for dependent tests    
*reject  at a 5% level H0: coefficient in first equation = coefficient in second equation 
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APPENDIX 7 – DESCRIPTIVE STATISTICS 
 

Table 20 Descriptive Statistics 

 
Sample for which Earnings Data are available        

 ALL MALE FEMALE 

Variable Obs Mean/Proportion Std. Dev. Obs Mean/Proportion Std. Dev. Obs Mean/Proportion Std. Dev. 

Midpoint Earnings 22426 2804.721 3985.547 12462 3263.767 4532.675 9964 2230.592 3076.337 

Lognormal Earnings 22426 2799.378 4198.092 12462 3266.093 4828.395 9964 2215.657 3145.887 

Pareto-Midpoint Earnings 22426 2805.434 4234.651 12462 3277.108 4908.638 9964 2215.51 3098.417 

Experience 22288 23.7098 12.45993 12378 23.6102 12.51723 9910 23.83421 12.3875 

Experience Squared 22288 717.3975 667.2635 12378 714.1098 675.187 9910 721.504 657.2435 

Education 22288 8.534458 3.726815 12378 8.48465 3.732897 9910 8.59667 3.718456 

Education Squared 22288 86.7255 54.0523 12378 85.92269 54.0765 9910 87.72825 54.00803 

Black 22426 0.693748 0.460946 12462 0.692586 0.461441 9964 0.695203 0.460345 

White 22426 0.124811 0.330511 12462 0.125662 0.331481 9964 0.123746 0.329308 

Coloured 22426 0.148488 0.355591 12462 0.145001 0.352116 9964 0.15285 0.359861 

Indian 22426 0.032239 0.176639 12462 0.035949 0.186171 9964 0.027599 0.16383 

Urban 22419 0.629645 0.482911 12455 0.611963 0.487323 9964 0.651746 0.476441 

Union 22426 0.268082 0.44297 12462 0.305088 0.460463 9964 0.221799 0.415477 

Hours 22341 44.88761 15.22701 12419 46.84661 14.3913 9922 42.4356 15.8761 

 

 

 

 


