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Stellenbosch

o Conditional expectation — linear regression

Q When does regression have causal or ceteris paribus interpretation?

o Population vs Sample Regression Functions

o The Ordinary Least Squares Estimator

@ Derivation

Q Mechanics and interpretation of OLS with multiple regressors
o Properties of OLS estimators

@ Goodness of fit

(*] Partialling out interpretation
o Expected values and variances of OLS
()] Assumptions to ensure that OLS is unbiased/causal
Qo Including too many variables
[+ ] Sample variation in OLS estimates
o Imperfect multicollinearity
@ Variances in misspecified models

@ Gauss-Markov Theorem




Conditional expectation function

Different distributions of
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Y =wageatx =educ=1---20
— distributions around CEF
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Deterministic vs statistical
How to estimate the slope of the CEF?
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..it quantifies the relationship between
Y = wage and X = educ
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Definition of the regression model

‘Explain y = wage in terms of x = educ”

Functional form: “Linear Regression”

y= ﬁO + ﬁlxmain +u

Bo: y — intercept - "mean wage of individuals with O education”
CONDITIONAL mean

B = i‘ggfj: slope of a straight line - Awage for one year Aeduc
u are unobservables - social networks, soft skills, ability, motivation, etc
Ceteris paribus???
Linearity?
In parameters, not in variables (more later)

A marginal change in x (say, education) has the same impact on y (say,
wage), regardless of the level of x

Realistic? We will see how to deal with this later
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When is 3 a ceteris paribus effect?

Hold other observables (x,.) & unobservables (¢) constant as Xpqin
changes

Think of u = +¢e =y = Bo + BiXmain + PotherXother + €
Split u into and ‘randomness" that is uncorrelated with X;qin

If Xotner i part of u (OR: Xomer also determines y) AND correlates with Xpmain,
cannot “hold it constant” unless somehow “taken out of u"

POPULATION REGRESSION FUNCTION: 5, is "true" (not necessarily
known) relationship if... all relevant x's included (x;gin); Or only
‘randomness’ (¢) is left in u, so that Cov(u; Xmain) = Cov(e; Xmain) = O

Y = Bo + BXmain + U
Ay = B1AXmain + AU

Ay 4 A/BO + /81 AXrncu'n + Au
AXmain AXma/‘n AXrncu'n AXma/’n
A Au A Au
~—o+p+ = =P
AXmain AXmain AXmain AXmain
A A A A
Br="Yonyif Y —goriater __2° _g
Ax Ax AXmain AXmain
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State this more fo s

If there is an intercept, it can be shown that £E(u) = O... always
Now what must we assume to obtain “ceteris paribus” estimates?

No correlation between x and u

Generalise this to non-linear relationships with conditional expectations:
E(ulx) = E(u)

Mean (non-linear and linear) INDEPENDENCE
Average of unobservables is the same, regardless of values of x

Concretely: for regression to have ceteris paribus or causal interpretation,
average motivation/ability/access to education (absorbed in u because it is
not measured/unobserved) must be the same for people with low and high
levels of education (xmgin) — likely not a good assumption — estimate of 3;
does not necessarily have causal interpretation

How could unobservables influence our estimate relative to the true
("unbiased"/causal/population) value?

Often simplified as: E(u|x) = O because E(u) = O

Zero conditional mean assumption
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POPULATION regression function

y, x and u are random variables
They have a population distribution
A "real” set of values that is partially reflected in our sample
E(y|x): how the average value of y changes with x in the population
In the population, the g are not random

They have no distribution, because one true (unbiased/causal/ceteris
paribus) population value for them

‘DATA GENERATING PROCESS": the conditional expectation function is
the part of PRF, separated from the random
component
y= +u
E(ylx) = E(Bo + Bx + ulx)
= E(Bolx) + E(Bx|x) + E(ulx)
= +0

because if the PRF is fully specified, there is no remaining relationship
between u and x
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Model with 2 independent variables ( Sitenbosch

Suppose the Population Regression Function includes experience
according to theory

wage = (o + preducation + B.experience + u

Taking experience out of the error term, and assume this theory is

‘enough’ to characterise the DGP (ie u is now random and unrelated to
all the x's)

B is ceteris paribus effect of education on wage holding experience and u
fixed

B2 is ceteris paribus effect of experience on wage holding education and u
fixed

But now we have a better estimate of it; it is a causal estimate IF we
have fully specified the PRF, meaning that £(u|educ; exper) = O

Had we left experience out
wage = Bo —+ Bleducation + & where {0 contains experience

If education and experience are correlated, E(educ|ii) # O so that 51 #
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Model with k independent variables ( Sitenbosch

If PRF must contain more variables (k of them)

Y= Bo+pxa+ Boxz- -+ BrXe + U
The zero conditional mean assumption extends to:

E(ulx1, X2, -+ ,Xx) = E(ulx) =0

Average of unobservables is zero regardless of each value of each x;,
for example

Average motivation (contained in u) must be zero at educ = O and
educ = 1and.. educ =20

AND average motivation must be zero at exp = O and exp = 1 and...
exp =40

AND similar for all other variables in the PRF

Or simply: independence of all the variables and the unobservable
population error
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Stellenbosch

Sample Regression Function

Hardly ever have data on the whole population
Two main data reasons for biased estimation (among others)
@ Not all variables collected (as before): a “column problem”
@ Do not sample whole population: a “row problem”
Draw representative SAMPLE from population
Draw inferences about population based on sample

Different sub-samples of data from the same population, estimate of the PRF
(= SRF) is different in each case

Estimate because know true PRF without full information
B is therefore also stochastic - a random variable = B has a distribution

(remember the distributions around the slope of the CEF?)
(NOTE: the "hat" emphasises that this is an estimate from a sample)
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Full information

Imagine for a moment that educ and age tell us everything about why
people get paid what they do..

Code simulates a fake “population” level dataset that reflects the
following PRF:

wage = (o + Breduc + peexper + u
where o = 10,6, =0.5,6, = 0.1
STATA CODE

14-02-2024 1,77
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Full information

Population of N = 60million

"True" population regression function is

@ Stellenbosch

wage = fBo + Breducation + Brexper + u

With full information could estimate 3; from the PRF without a
problem using Ordinary Least Squares (OLS) - more later

Observation | wage _educ_exper _random u
1[1863818 11 31 00381753

2| 17.58195 9 30 0.0819504
3[17.20783 11 17 0.0078265

4| 18.22533 1 28 -0.0746732
5[18.55206 12 26 -0.0470415

6| 17.37125 1 19 -0.0287531

7| 17.56123 13 11 -0.038775

8| 17.26208 11 19 -0.1379214
o|17.77695 11 23 -0.02305

10 | 17.60788 8 35 0.1078842

100 | 18.40646 13 19  0.0064596

1000 | 1824569 12 23  -0.054311
100000 [ 18.15609 11 28 -0.1439148
10000000 | 17.86163 13 15 -0.1383734
60000000 | 10.64043 15 22 -0.0595725

. reg wage educ exper u

Source ss df Ms Number of obs = 60000060
F(3, ) > 99999.80

Model 29878427.6 3 9956809.19 Prob > F = 8.8660
Residual .820@18149 59959996 3.8248e-13  R-squared = 1.0080
Adj R-squared = 1.0080
Total 29878427.6 59999999 .497848468 Root MSE 5.5e-@7
wage Coef. Std. Err. t P>|t| [95% Conf. Interval]
educ -5 5.27e-11 9.5e+89 ©.600 -5 -5
exper .1 1.77e-11 5.6e+89 ©.000 .1 .1
u 1 7.16e-18 1.4e+89 6.000 1 1
_cons 16 8.26e-18 1.2e+186 ©.000 18 10




Don't observe randomness

» Population of N = 60million

» Estimate Sample Regression Function

wage = Bo + Beducation + Bexper

» Only omitting random information (u) gives B close to population 5,

Observation | wage _educ _exper

1]18.63818 11 31

2 [ 17.58195 9 30

3 17.20783 11 17

4 |18.22533 11 28

5 | 18.55296 12 26

6 | 17.37125 11 19

7| 17.56123 13 11

8| 17.26208 11 19

9| 17.77695 11 23

101760788 8 35

100 | 18.40646 13 19

1000 | 1824569 12 23

100000 | 1815609 11 28

10000000 | 17.86163 13 15
60000000 | 19.64043 15

. reg wage educ exper

[T({ Stellenbosch

Source ss df Ms Number of obs = 60000000
F(2, 59999997) > 99999.60

Model 29270445 2 14635222.5 Prob > F = e.0000
Residual 599982.53 59999997 .@899997@9  R-squared 0.9799
Adj R-squared =  ©.9799

Total | 29870427.6 59999999 497840468 Root MSE = .1
wage Coef. Std. Err. t Pt [95% Conf. Interval]
educ .5600077  9.592-86 5.2e404 ©.000 .4999889  .5000265
exper 166001 3.22e-86 3.1e+04  0.000 0999947  .1000073
_cons 9.999876  .0@01563 6.7e+04  ©.000 9.999582  10.60017




+Don't observe exper (part of PRF) e

» Population of N = 60million

» Estimate Sample Regression Function
wage = fo + peducation

» Omitting non-random information (exper) gives B1 not close to true B,

. reg uage educ
Observation | wage

1] 18.63818 Source ss df 3 Nurber of obs = 60000099
2| 1758195 F(1, ) > 99999.00
3| 17.20783 Model | 19617699.2 1 19617890.2 Prob > F -
4| 1822533 Residual | 10253337.4 59999998 .176888962 R-squared - 8.6567
albBoas Adj R-squared =  ©.6567
5 | AE2S Total | 29878427.6 59999999 497849468 Root MSE = 41339
6|17.37125
7 [ 17.56123
8 17.26208 wage Coef. Std. Err. t Py[t] [95% Conf. Interval]
9 [ 17.77695
10 | 17.60788 educ 4606153 0060373 1.le+Bd  £.600 .3999451  .4606925
_cons 13.34987  .0084327 3.1e+84  0.000 13.34%02  13.35072

100 | 18.40646

. correl
(obs=68,666,668)
1000 | 18.24569

educ  exper U wage
100000 | 18.15609
B educ 1.0060
10000000 | 17.86163 exper | -8.3357  1.e808
B u 0.0081 0.0000 1.0000
60000000 | 19.64043 wage 8.8184 ©.2635 ©.1418 1.0800




((({ Stellenbosch

+take one sample of n = 1000

ERSITEIT

» Sample of first n = 1000 from population of N = 60million

» Estimate Sample Regression Function

wage = Bo + Beducation

» Omitting the > 59million observations gives different j3; to before

Observation | wage  educ
1[1863818 11

2| 17.58195 9
3|17.20783 11
4| 18.22533 11
5[1855206 12
6| 17.37125 11
7|17.56123 13 . reg wage educ if _n<=1008
8| 17.26208 11
9|17.77695 11 Source ss df s Number of obs = 1,000
10|17.60788 8 F(1, 998) = 1828.98
Model 331.79645 1 331.79645 Prob > F = o.0000
100 [ 18.40646 13 Residual | 181.048127 998 .181416948 R-squared = 0.6470
Adj R-squared =  0.6466
: ; Total | 512.844576 999 .513357934 Root MSE = .42592
1000 | 18.24569 12
100000 [ 1815609 11 wage Coef.  Std. Err. t B>t [95% Conf. Interval]
10000000 | 14-86163 3 educ .3998291 .0093304 42.77 9.000 .3807197 .4173386
ks = B _cons 13.36459 .1080214 123.72 8.000 13.15261 13.57656
60000000 | 10.64043 15
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+take 2”d Sample Of n— 1000 ( Stellenbosch

Sample of last n = 1000 from population of N = 60million
Estimate Sample Regression Function
wage = Bo + Breducation

Omitting the > 59million observations gives a different B1 to before (but
with good sample design, it may not be that far away)

Observation | _wage _cduc | ERERNTSRGGRIUN

11863818 1 31 6e337s3
21758195 9 30 0.0819504
31720783 11 17 60078265
41820533 11 28 -0.0746732
51855206 12 26 6.0470415
6173725 11 19 oo%e7En
#7638 13 it -0.038%5 . reg wage educ if _n> _N-1000
81726208 11 19 sa372
9| 777606 i1 28 Source ss df Ms Number of obs = 1,000
0 [i760788 & 35 F(1, 998) - 1725.41
N o - Model | 318.@19237 1 318.819237 Prob > F = 8.0000
100 | 1840646 43 19 Residual | 183.947644 998 .184315675 R-squared = 8.6335
- - - Adj R-squared =  8.6332
o * Total | 501.966281 999 .502458749  Root MSE = L4932
1000 | 1824569 12 23
100000 | 2815600 11 28 & wage Coef. std. Err. Tt P> t| [95% Conf. Interval]
10000000 | 17-86163 33 15 -6- educ 3032891  .0@94682  41.54  6.090 3747092 4118689
J _cons 13.4136  .1091353 122.91 ©.009 13.19944  13.62776
60000000 | 19.64043 15

Dieter von Fintel
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(| Stellenbosch

+take 3@ random sample of n = 1000

Random sample of n = 1000 from population of N = 60million
Estimate Sample Regression Function
wage = Bo + Breducation

Omitting the > 59million observations gives a different B1 to before (but
with good sample design, it may not be that far away)

. sample 1868, count
(59,999,080 cbservations deleted)

. reg wage educ

Source sS df Ms Number of obs = 1,608
F(1, 998) = 1789.27

Model 325.887479 1 325.887479 Prob > F = 0.0080
Residual 181.769655 998 .182133923 R-squared = 0.6419
Adj R-squared = 8.6416

Total 507.657135 999 .5881653 Root MSE = 42677
wage Coef. Std. Err. t P> |t [95% Conf. Interval]
educ .4107828 .0097112 42.30 0.000 .391726 .4298395
_cons 13.22154 .1127518 117.26 0.000 13.00028 13.4428
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Sample Regression Functions

In summary

We usually have column problems (omitted variables) that give us
B#B
We usually observe one set of rows that deviates from the population

Omitting rows can add to the column problem if the sample is
non-randomly collected

Omitting rows is less problematic with random sampling

If we were to observe a different set of rows in our sample, we would get
a different 3 (even ignoring the column problems)

Our sample regression function therefore has stochastic estimates of B with
a distribution

Dieter von Fintel o cs: Chap.2& 3 14-02-2024 18/77



SRF - an illustration using census st

“Population” - note: we are ignoring column problems for now

reg 1_inc educ

Source EE df MS Number of cbs = 1,540,893

F (1, 1540891) > 99995.00

Model 1034722.29 1 1034722.29 Prob > F = 0.0000
Residual 2097529.44 1,540,891 1.36124453 R-squared = 0.3303
Adj R-squared = 0.3303

Total 3132251.73 1,540,892 2.03275228 Root MSE 1.1667
l_inc Coef. std. Err. t P>t [95% conf. Interwval
education .2096349 .0002404 871.85 0.000 .2091636 .2101062

_cons 7.782751 .0020603 3777.40 0.000 7.778713 7.786789




2x Random samples: 0.05% observations

source ss dt MS Number of cbs = 770
F(1, 768) = 324.81

Model | 447.772298 1 447.772298 Prob > F = 0.0000
Residual 1058.74018 768 1.37856794 R-squared = 0.2972
Adj R-squared =  0.2963

Total 1506.51247 769 1.95905393 Root MSE = 1.1741
1_inc Coef. Std. Err. t P>t [95% Conf. Interval]
education .19508%  .0108248 18.02  0.000 .1738394 .2163387
_cons 7.923942 0921992 85.94  0.000 7.742949 8.104934
source ss at MS Number of cbs = 770
F(1, 768) = 472.93

Model | 584.256764 1 584.256764 Prob > F =  0.0000
Residual 948.791361 768 1.23540542 R-squared = 0.3811
2dj R-squared =  0.3803

Total 1533.04812 769 1.99356063 Root MSE = 1.1115
1_inc Coef. Std. Err. t P>t [95% Conf. Interval]
education .2185987 .010052 21.75  0.000 .1988661 .2383313
_cons 7.710336  .0878119 87.81  0.000 7.537956 7.882716

Dieter von Fintel
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“Distribution” of 31 from 100 different SRFs{{ &

Sample 0.5% from population (larger sample size n)
Sample 0.05% from population (smaller sample size n)
distribution is wider in smaller samples

In Chapter 4: use distribution to assess the validity of our estimates

3
=)
8 1
o
T T T T T T
.18 19 2 21 22 23
beta on education
resampling 0.5% resampling 0.05%
Variable ‘ Obs. Mean std. Dev. Min Max
b_50 100 .2091172 .002018  .200028  .2170477
bs 100 .2082802  .0088448  .1844666  .2316327
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Deriving OLS Estimates

e do not know population parameters or the distribution

Need to find an mathematical estimators to approximate these from a
sample

Ordinary Least Squares Estimator
Carl Friedrich Gauss, University of Géttingen

An official partner to our Economics Department

Approach is to find the best fitting line that minimises the sum of squared
residuals (31, U7)
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Obtaining OLS estimates

Take the following SRF
yi= +Ui =Yy +U
SAMP.resid. =U; =y, —
=VYi— (Eo + Bixy + Boxai - + kam')
POP. unobs. = u; =y, — (Bo + Buxy + BaXai - -+ + BrXei + - + Bire)X(kei)i)

SAMPLE residual not the same as POPULATION unobservable, unless
can control for all x;: U # u

Minimise sum of squared residuals using optimisation techniques

Get the fitted model to be as close to the data as possible

n n
S . . 2
min Z uf = min Z {)/i - (ﬂo + Bixii + BaXai - + IBI?Xk/):|
i=1 i=1

Minimisation with multivariate algebra in Appendix E and SunlLearn
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Stellenbosch

Derivation of OLS estimates

Express the OLS model in matrix and vector notation:

y=XB+U=PFo+Bxi+ - +Bxx+1

Y1
Yo | . .
where y = . is the dependent variable vector
~~ :
nx1 Vi
1 X X2 - xi
X - 1oxar xe2 oo ok is the matrix of explanatory variables,
<~ : : : : the first col is to estimate the intercept,
nx (k+1) ) ' ) '
}\ Xm Xp2 0 Xpe
Bo Uy
- B | p N u | :
B = is the coefficient vectorand u = . is the residual vector
~~ ~~ :
A9 1 A
(k+1)x1 B, nx T
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D e r i Vati O n Stellenbosch

=lU=y—-XB8
n
W= (y_xa)'(y_xﬁ) Oy X O +0o xUp - Tn x T = > 0P
i=1

= yy - Bxy - y'XB + BX'XB
~~ N—— —— N——
(Axn)(nx1)  (IxkR+1)(R+1xn)(nx1)  (Ixn)(nxk+1)(R+1x1)  (IxR+1)(R+1xn)(nxk+1)(R+1x1)

=Yy —2BX'y+BX'XB

N,
MY _ _oxy 4 2X'XB =0
op

X'XB =Xy

B=(X'X)"'Xy

IF (X"X) is invertible: X has full column rank (no perfect linear relationships)

SIMPLE REGRESSION: B, = 20%4) = var(x)) # 0

MULTIPLE REGRESSION: typical element of Bis §; = vzt = Var(x)) # O, where 5 is
J
‘partialled out” (later)
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If Var (XJ) =0 1 Stellenbosch

» No estimate if all values of x; are the same (denominator of Bl)
| FIGURE 2.3 |

A scatterplot of wage against education when educ, = 12 for all I.

wage

0 12 educ

Copyright (©) 2009 South-Western/Cengage Learning
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Fitted Values and Residuals

,Vi:Bo+31Xi+a/:)7/+ﬁi
Ui =yi—Yi
NOTE: with the hat they are predictions and residuals (not the population
error term)
| _ricure 2.4 |

Fitted values and residuals.

i

0, = residual

¥, = fitted value

14-02-2024
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Properties of OLS on Any Sample of Data {2

OLS is an estimator (a mathematical rule) that uses a sample to find
estimates for E(y|x) - not reaching the population estimate exactly

OLS estimates differ for each sample used: How well does it perform
on the specific sample available to researcher?

salary = regression line
U = residuals
Negative: function overpredicts

Positive: function underpredicts
[ hsieaa ]

Fitted Values and Residuals for the First 15 CEOs
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Stellenbosch

Properties of OLS

Algebraic
Residuals sum to zero or average to zero

By implication, the average of actual y values equals the average of fitted

values
ZAZ ZAZ

Sample covariance between residuals and variables is zero
Does not imply Cov(u; x) = O in population

Cov(U; x) = O in sample does not that imply satisfying E(u|x) = O in the
population

OLS estimation imposes this assumption on the sample; we get it “wrong’ (ie
we get bias) if it does not also hold in the population

n
Cov(U; x;) = %ZXU-G,- =0Oforj=1---k
i1

(x;¥) = (x1,X2, -+ ,Xr,y) is always on the regression line

14-02-2024 29/77
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Properties of OLS e

Total sum of squares (SST)

The total variation in y
Explained sum of squares (SSE)

The variation in y explained by the model
Residual sum of squares (SSR)

The variation in y that is not explained, and contained in residuals

SST = SSE + SSR

i —Y)2 = Z §% —)7)2 + Z (vi —)7/)2
i=1 i=1 i=1
S - variance of
YT o1 y
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Goodness of fit

Small residuals: model fits the specific sample data well
Small SSR means a "better” sample fit
Could get a different R? in a different sample
R? is a measure of sample fit
Not how well the data fits the population
Not how well the model fits the population

Ratio of explained variance to total variance in sample

SST = SSE + SSR
SSE SSR

R MO a < R? <
R <ot 1 o7 where O <R <1

Adding more variables: SSR |= R? 1 as soon as you add more (even
irrelevant) variables to the model

Also, the squared correlation coefficient between y and y

Intuitively, how related is the prediction from the model to the observed data
Dieter von Fintel cs: Chap.2& 3 14-02-2024 31/77




R? from our SRF experiment

50

40

30

10

resampling 0.5% resampling 0.05%

Small probability of drawing sample with low or high R?
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Goodness of fit

We tend to obtain low R? in cross section analyses
Does this mean we have a bad equation?

No, we just have a lot that is unexplained by the factor we have included
in the model

We may still have the correct relationship between x and y if
zero-conditional mean assumption holds.

Be cautious to think a high R? means you have a good model

More later
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“Partialling Out” interpretation of OLS

Consider 2 variable case
Vi = Bo + Bixi + BoXoi + U

Suppose we have a second regression which removes the overlap
between x; and x,

Xy = Qo + Q1Xai +T;

Cov(r; x2) = O by properties of OLS - x; is “partialled out"
Tis a ‘new version” of x; that removes x>

In next slide we show that 31 = c\%%/) or the regression of ron y

In other words: Bl measures the effect of x; on y after removing their
shared correlation with x>

Holding x, constant, ceteris paribus
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Partialling out

Vector notation, no Bo for simplicity y = lel + Eng + U Stacking the
explanatory vectors in columns gives X = [x; X2]

. AN A A | X xixe
By matrix multiplication X’X = [ X, } [x1 X2 | [ XX, Xoxo

Recall that X’X8 = X'y = "stacked" version of the OLS equations:

{ XX, XXz } B | [ xy ]
/ / iy - /
XoX1 XHXo By XLy

Write out first row as: X{X131 + X{ngg = X1y
X1X1§1 =Xy — Xingz
Br = (xxa) " Xty — (xx1) T X
= (xxa) g (y — x2Pe)

= (x{x1) ' x| (1)

To get 3, run a simple OLS on “partialled out” xy; similar for 3>

Dieter von Fintel
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ILllustration

@ Stellenbosch

How can we see the "partial effect interpretation”

education?

. reg Iwage educ exp

of the coefficient on

Source ss df Ms Number of obs = 23436
F( 2, 23433) = 4912.28

mode] 8688. 99642 2 4344.49821 prob > F = 0.0000
residual 20724.4959 23433 .884414965 R-squared = 0.2954
Adj R-squared = 0.2953

Total 29413.4923 23435 1.25510955 ROOT MSE = .94043
Twagel Coef. std. Err. T P>]t] [95% Conf. Interwal]
educ 184121 . 0018693 98.50 0.000 .1804569 .187785

exp - 0262852 . 000575 45.71  0.000 -0251581 .0274123
_cons -.324087 0274771 -11.79 0.000 -.3775439 —.2702301

Dieter von Fintel

14-02-2024 36/77



llenbosch

Remove shared effect of educ and exper [

“Purify” the overlap from educ to get “educ only”

. reg educ exp if e(sample)==
Source ss df ms number of obs = 23436
F( 1, 23434) =10575.67
Mmode 114220.396 1 114220.396 probh > F = 0.0000
rResidual 253094.23 23434 10.8003 R-squared = 0.3110
adj R-squared = 0.3109
Total 367314.626 23435 15.6737626 ROOT MSE = 3.2864
educ Coef. std. Err. T P>t [95% Conf. Interwval]
exp -.171537 .001668 -102.84 0.000 —-.1748064 -.1682676
_cons 13.03032 .044434 293.25 0.000 12.94322 13.11741
. predict r, res
(290 missing values generated)

An aside: if e(sample)==1 limits sample to same observations used in
previous estimates

An aside: after we have run estimates, we can store certain aspects of
the model as variables with predict, in this case we create the
variable r which is the res(iduals) from the regression
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Effect after shared effect removed

(| Stellenbosch

Use “purified” educ (residuals from previous equation)

IvER:

. reqg Twage r
source ss df Ms Mumber of ohs = 23436
FC 1, 23434) = 9651.03
Model 8580.02727 1 8580.02727 Prob > F = 0.0000
Residual 20B33.465 23434 _8BBY9027269 R-squared = 0.20917
Adj R-squared = 0.20917
Total 29413.4923 23435 1.25510955% RoOT MSE = .D4288
Twagel Coef. std. Err. T Pt [95% conf. Interwval]
r 184121 .0018742 98.24 0.000 .1B04474 .1877945
_caons 1.951492 .0061591 316.85 0.000 1.93942 1.963565

The simple regression with the “purified” educ, gives us almost identical
estimates to the multiple regression that included both educ and

exper

14-02-2024
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Comparison: Simple & Multiple Regressiori

Simple Regression: §; = o + fuxa
Multiple Regression: Ji = Bo + BiXyj + PoXai
Can be compared by: f1 = Bi + 320

where ¢ is the coefficient of regressing x> on x;

Multiple regression simplifies to simple regression only if
Cov(xz;y) = Oor 32 =0
Cov(xz;x1) = O or 5=0

We will use this formula to argue about bias in estimating models that
have omitted variables
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Illustration: simple vs multiple

reg lwage educ

Source 55 df MS Number of ohs = 23436

F( 1, 23434) = 7102.12

Model 6841.02182 1 6841.02182 Prob > F = 0.0000

Residual 22572.4705 23434 .963235916 R-squared = 0.2326

Adj R-squared = 0.2325

Total 29413.4923 23435 1.25510955 RoOt MSE = .98145

Twagel coef. std. Err. T P>t [95% conf. Interwval]

educ .1364713 . 0016194 84.27 0.000 .1332972 .1396454

_cons . 7192268 . 0159658 45.05 0.000 . 6879327 . 7505208
reg Iwage educ exp

Source ss df MS wumber of obs = 23436

F( 2, 23433) = 4912.28

made B8688.99642 2 4344.49821 prob > F = 0.0000

Residual 20724.4959 23433 .884414965 R-squared = 0.2954

Adj R-sguared = 0.2953

Total 29413.4923 23435 1.25510955 ROOT MSE = .94043

Twagel coef. std. Err. t P=|t] [95% conf. Interwal]

educ 2184121 . 0018693 98.50 0.000 .1804569 .187785

axp -0262852 - 000575 45.71 0.000 -0251581 -0274123

_<cons -.324087 . 0274771 -11.79 0.000 -.377%439 —.2702301

@ Stellenbosch

Dieter von Fintel
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Find 6 and put it all together.. e

. reg exp educ if e(sample)==

Source ss df Ms Number of obs = 23436
F( 1, 23434) =10575.67

mModel 1207072.88 1 1207072.88 Prob > F = 0.0000
residual 2674681.49 23434 114.136788 R-squared = 0.3110
Adj R-squared = 0.3109

Total 3881754.37 23435 165.639188 ROOT MSE = 10.683
exp coef. std. Err. t P>|t] [95% conf. Interwval]

educ -1.812791 .0176276 -102.84 0.000 -1.847342  -1.778239
_cons 39.692 L173795  228.38  0.000 39.35135 40.03265

51 = 51 + Bzg
0.1364713 = 0.184121 4+ 0.0262852 x —1.812791

Note differences due to rounding
What does this tell us?
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Expected Values & Variances of 8o, s G s

Up to now: used a “formula” to find out a relationship between x and y

But the result depends on the one sample drawn from many possible
samples that make up the population
Different estimates of B depending on our sample
OLS estimates are therefore also random variables with a distribution
Which have both expected values and a variances
Objective:

Show under which circumstances OLS is unbiased and efficient at estimating
(unknown) population model

For this we need assumptions
SLR 1-4 (Simple Linear Regression)
MLR 1-4 (Multiple Linear Regression)
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OLS assumptions

SLR1/MLR1 - Linearity in all k + 1 parameters

Linear relationship between (perhaps non-linearly transformed) variables
(8 to the power 1)

Must assume a population model y = Bo + fixa + - -+ + Brexe + U
If the PRF were non-linear in parameters, OLS is not the right estimator
SLR2/MLR2 - Random sampling (‘the row problem”)

A random sample from the population for these random variables
{(xj;y):i=12,---nandj=1,--- R}

Sample size = n; number of variables = k

PRF "holds" for each unit in the sample = add a sub-script:
Vi = PBo+ Bxy+ -+ BeXe +uifori=1,--- .n

Dieter von Fintel
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OLS assumptions

SLR3 - Sample variation of explanatory variable

Any explanatory variable (x;) may not be the same value for all
observations ()

Otherwise impossible to compute OLS estimate 3 = (X’X)flx’y

Var(x) # 0 & (X’X) cannot be inverted

NO INFORMATION in variable to distinguish between units of analysis
MLR3 - No perfect multicollinearity - cannot estimate if this fails

No exact linear relationship among independent variables < (X'X)
cannot be inverted

Eg including expenditure in Rands and expenditure in Dollars in same model
Eg including expenditure A, expenditure B and total expenditure (A+B)
NO NEW INFORMATION by adding a variable
Column vector (1 in X) to estimate fo is constant, so that Var(x;) # O
Need more observations than regressors

Can you draw a unique straight line through one datapoint?

Dieter von Fintel
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An example of perfect multicollinearity ==

One variable can be expressed as an exact linear combination of other
variables in the model

Potential Experience = Age — Education — 6
by Mincer's (1974) definition and a possible PRF:

log(wage) = fo + PiExper + BoEduc + 33Age + u
= Bo + P1(Age — Educ — 6) + BzEduc + B3Age + u
= (Bo — 661) + (b1 + B3)Age + (B2 — Br)Educ +u
= o + apAge + azEduc 4+ u

Possible to estimate «;, but impossible to find unique solutions for 5;

Dieter von Fintel o cs: Chap.2& 3 14-02-2024 45777



Perfect Multicollinearity [ st

. reg lwage educ exp age
note: educ omitted because of collinearity

Source SS df MS Number of obs = 23,436
F(2, 23433) = 4912.23
Model 8688.92651 2 4344.46325 Prob > F = 0.0000
Residual 20724.5658 23,433 .884417948 R-squared = 0.2954
Adj R-squared = 0.2953
Total 29413.4923 23,435 1.25510955 Root MSE = .94043
lwagel Coef. Std. Err. t P>t [95% Conf. Interval]
educ 0 (omitted)
exp -.1578357 .0016206 -97.40 0.000 -.1610121 -.1546593
age .1841194 .0018693 98.49 0.000 .1804553 .1877834
_cons -1.428745 .0377775 -37.82 0.000 -1.502791 -1.354699

In technical terms, this is the same as saying that (X’X) cannot be
inverted.

X not of full column rank
Cannot calculate 3 = (X’X) "' X'y unless we drop a variable

STATA simply drops a variable of its choice to “make it work": no need
to test for perfect multicollinearity
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Multicollinearity

Are exper and exper? perfectly multicollinear?
No!
Multicolinearity implies perfect linear relationships
These variables are perfectly non-linearly correlated

This has nothing to do with the error term
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OLS assumptions

SLR4/MLR4 - Zero Conditional Mean ("the column problem”)
E(uix)=0

Implies independence of u and x, as before
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Does OLS have causal interpretation? e

Is OLS unbiased/causal? (E(Bj|x1,x2, -, Xg)=giforallj=1,--- ,R)
Yes! IF ALL THE ASSUMPTIONS HOLD!

SLR1: if your PRF is linear, OLS is a good way of estimating it — if PRF is
non-linear one obviously cannot fit straight lines through data

Could introduce non-linear variables
Or would have to move to non-linear estimators, which do not fit straight lines
SLR2: random sampling solves the "row problem®
SLR3: you cannot estimate OLS without variation
SLR4: zero conditional mean solves the "column problem’
The estimator is unbiased

Specific estimates may not exactly reflect the population, if we use a sample

that produces By that is in the tail of the population distribution of all possible
estimates

But the average of ALL possible estimates using a representative sample will
be the true population value under the assumptions
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Distribution: 3 100 SRFs same population § =

o
3 4
i
o
S -
=]
o |
wn
o -
T T T T T T
.18 .19 2 .21 .22 .23
beta on education
resampling 0.5% resampling 0.05%
Variable Obs Mean Std. Dev. Min Max
b 50 100 .2091172 .002918 .200028  .2170477

b 5 100 .2082802 .0088448 .1844¢666 .2316327

Dieter von Fintel
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Theorem E.1

Show that MLR4 gives unbiased/causal estimates of the population 8

@ Substitute PRF into OLS estimator

@ Take conditional expectations

1

B=(xx)"Xy
= (X'X)7'X'(XB + u)
= (X'X) ' X'XB + (X'X) " X'u
=B+ (X’X)*lx'u
E(BIX) = B+ (X'X) " X'E(ulX)

= 6 if and only if E(ulX) =
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Omitted Variable Bias: a simple case

PRF :y = Bo + Bix1 + X2 + U
5RF3y=30+31X1+a

Population model includes x> (32 # 0), but when omitted (perhaps
because there is no data), SRF restricted to 8, = O in sample

Violation of MLR4 - biased estimate of 3; - how large is the bias?
Use what we know about relationship between simple and multiple

regression

B = b1+ B0
where 4 is the regression coefficient of x, on x;
Estimate =" Truth” + bias
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(| Stellenbosch

Direction of Bias

Br=p1+ B0
UPWARD BIAS: 5,6 > O

62>O;5>O

B2 <0;6 <0 } B> 0: Bi'too positive" (1 < O: Bi"not as negative"

DOWNWARD BIAS: 5,6 < O

52>O;5<O
52<O;5>O

} B> 0: Bf‘not as positive” pf1 < O: 31“too negative'

Summary of Bias in 3, when x, Is Omitted in Estimating Equation (3.40)
Corr(x,x,) > 0 Corr(x,,x,) <0
} B=0 Positive bias Negative bias

B,<0 Negative bias Positive bias
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Omitted Variable Bias : examples s

PRF : log(wage) = Bo + preducation + pability + u
SRF : log(wage) = Bo + Breducation + T

A classical example from the literature
‘Ability bias" in estimating 5; > O
What direction is the bias likely to take?

How are education and “ability” likely to be correlated? (§ > O)
How are wages and “ability” likely to be correlated? (3, > 0)

NOTE: this is a theoretical argument, because we do not observe “ability” and
we argue about unobserved population relationships

B> 0 and B0 > O = effect of educ “too positive" if “ability” omitted
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Omitted Variable Bias : examples s

PRF : crime = Bo + pexpenditure + Bopast crime + u

SRF : crime = Bo + Brexpenditure + T

Does expenditure on policing reduce crime?
What direction is the bias likely to take?
How are expenditure and past crime likely to be correlated? (§ > O)
How are current crime and past crime likely to be correlated? (5, > O)

B26 > 0 and p; < O = effect of expenditure is “not as negative” if we omit
“past crime”
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Including irrelevant variables in a model &=

PRF :y = Bo + Bix1 + Boxz +- U
SRF :y = Bo + Bx1 + Boxa + Baxs + U

Omitting variables results in bias (“missing column"); does adding too
many variables have similar effect?

Short answer: no effect on bias; but risk of increasing standard errors
X3 is not part of PRF (ie 3 = O in population)
53 will average to zero across all random samples
But it is possible that we draw a sample where it is large and significant

Overspecification is not serious for bias of 31 and 32

Variance: will discuss later
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Variance of OLS estimators e

Want to know "how far" estimates are from population value on
average

Variance of the estimator
Standard error of the estimator

Remember the estimator is also a random variable
BUT we don't observe the variation

In real life: only observe one estimate from one sample

Can be calculated under assumptions MLR1-MLR4, but need to add
another assumption to simplify the calculation
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variance Of OI_S eStimatorS ( Stellenbosch

Add assumption SLR5/MLR5: Homoskedasticity
u has same variance given any values of all explanatory variables
But also constant variance of y across different values of x
Var(ulx) = Var(y|x) = o°
Allows us to calculate standard errors for 8 simAply and efficiently,
even if we do not observe the distribution of 3
The assumption is NOT the same as E(u|X) =0
MLR5 can easily be violated

Eg at high education you have wider interests and greater variation in
wages

Low levels generally constant (low) wages

Dieter von Fintel
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Homoskedastic errors (g setentose

The simple regression model under homoskedasticity.

fiylx)

-
X e - E(ylx) = By + Byx

Copyright (© 2009 South-Western/Cengage Learning



Heteroskedastic errors

Stellenbosch

Var(wageleduc) increasing with educ.
flwageleduc)
wage
g A =" Ewageleduc) =
12 o B, + B,educ
16
educ
Copyright 2009 South-Western/Cengage Learnin



T h eo re m E . 2 :Stellen:osch

Homoskedasticity in matrix form.

Diagonals: same variance for each observation; off-diags: no

autocorrelation
g2 O .- 0
0O o2 O 0
Var(ulX) = = Ipo?
; .0
O ++ -+ 0O o°

Then:ﬁ:ﬁ-{-( X' )_1 u
var (,@\X) — Var (ﬁ +(XX)” ’X|u)
= Var ((X’X) X’u|X) because 3 is not random
= (X'X) X var(uX)X (X'X)
= (X'X) " X' po?X (X'X) 7
a® (X'X) XX (X'X) T
=o? (X'X) 7"
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(| Stellenbosch

Estimating the error variance

We do not know ¢° because it is the variance of population errors u,
which we do not observe

However, an unbiased estimator for 2 comes from sample residuals

SSR =L U
: SSR

~2 _
n—(k+1)

o~ =S5

Standard error of regression (square root of estimated variance)

Also estimates the standard error of y once effect of x is removed
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Standard Deviation vs Standard Error (e

Standard deviation: if we knew o2 estimated from u

Standard error is an estimate of the standard deviation (62 estimated
from residuals U)

Because we do not have population errors

It is therefore in itself a random variable, because it differs by sample
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(| Stellenbosch

Gauss-Markov Assumptions

MLR1-MLR5 are the Gauss-Markov assumptions for cross section
data with random sampling

Change slightly for time series data
All G-M assumptions are required to get OLS standard errors
MLR1-MLR4: to establish whether Bj is biased or not
MLR1-4 plus MLRS5 is required for variance calculations
Under MLRS5:

Var (§|X) =g° (X’X)_1 with diagonal elements Var(@) = Sigle_gz)
J J

2

where SST,, = >, (x5 — 79)2 is the variation in x;
and RJ? is the fit of the regression of x; on all other covariates
Summarised in (X’X)_1

Dieter von Fintel o cs: Chap.2& 3 14-02-2024 64/77



The Components Of OLS Variances (| Stellenbosch

Under MLR5:

Var (§|X) =g (X’X)_1 with diagonal elements Var(ﬁj) = WE—RZ)
J J

3 changes determine whether OLS estimates are more/less efficient when
adding/dropping a variable

to? = 5B, =t Var (BIX)

Cannot reduce SSR by 1 n, but can do so by 1 k (number of variables)
1 SST,, =1, Var (BIX)

Non-experimental analysis: cannot “introduce” variation in x;, unless 1 n
IMPERFECT multicollinearity 1 R? = (1 - R?) =1 Var (BIX)

(X'X) ™" captures both the variation within each x; (which is SST)) and the
variation between the explanatory variables (Rf)

Dieter von Fintel
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OLS Variance: Imperfect Multicollinearity {2

The strength of the linear relationship among the independent
variables (R?)
R isthe R* of Xj = Qo + G1X1 + - + Bj_1Xj—1 + Bj1Xjs1 + -+ QX + U
If R? — 1 (-perfect multicollinearity), Var(5;) — oo
Same as not being able to estimate the coefficient at all (MLR3 fails)

When R? moves close to 1 (but R? # 1), large Var(5). but does not violate
the perfect multicollinearity assumption

Strong interrelationships between x's make it difficult to distinguish which
of the variables is “doing the work" in explaining y

The uncertainty is reflected in higher standard errors
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Stellenbosch

Multicollinearity and variances of estimatée

Vﬂlvg‘) as a function of Rj.

Varlf,)
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Solving multicollinearity?

Drop variables?
But omitted variable bias is the trade-off!
Collect more data?
Higher n increases variation in x, and can reduce correlation between x's

Detection:

VIF = 171}?2 > 10 is "too high" - rule of thumb, but an “arbitrary threshold"
j

If one variable is not highly correlated with other controls

It's variance remains unaffected (low R?)
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Variances in Misspecified Models

Trade-off between bias and variance
If population model contains many collinear variables:
Include all variables to avoid omitted variable bias
Cannot solve this by increasing n
But at the cost of high variance

Can solve this by increasing n (© SSTXJ il o2

Ideally: have a large sample size to mitigate against collinearity and
specify all variables in the PRF in the sample model
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Use the famous auto.dta dataset on car prices in STATA
Suppose for some reason the following PRF is important for a research
question:

In(price) = Bo + Pilength + Boweight + [sforeign + u

- correl 1n price length m weight_k foreign

[ob==74)
1n_price length~s weight~g foreigm
ln price 10000
length met~s 0.45859 10000
weighe kg 0.5405 0_S4€0 10000
foreign 0.0870 -0.5702 -0.5%928 1.0000

Length and weight are strongly correlated with each other, and also
with price

Foreign is weakly correlated with price, but strongly negatively related
to length and weight
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UNIVERSITY

Simple regressions

. reg 1n_price length m

Source ss ae Ms Number of obs
E(L, 72)
Model 2.3640604 1 2.3640604 Frob > F 0.0000
Residual | 6.85947268 72 .123048232 R-squared 0.2106
Adj R-squared 0.1997
Total | 11.2235331 73 .153747029 Root MSE .35078
in_price Coef.  Std. Err. v Prul [95% Conf. Intervall
length metres 2.020501  .4609645 438 0.000 1.101585  2.538417
_cons 7.121762  .3489118  20.41  0.000 6.426215  7.817305
. reg ln price weight kg
Source ss ar Ms Number of obs
E(L, T2)
Model | 3.27831488 1 3.2783148% Prob > F 0.0000
Residual | 7.54521809 72 .110350251 R-squared 0.2921
Rdj R-squared 0.2923
Total | 11.2235331 73 .153747029 Root MSE .33219
1n_price Coef.  Std. Err. t Bt [35% Conf. Imterval]
weight kg 0005453 .0001001 459 0007448
_cons 7.817322  .155%086 521 6.128123
. reg 1n price foreign
Source ss as us Number of obs
E(1, 72) =
Modsl | .085003065 1 .085003065 Prob > F
Residual 11.13853 72 .154701806 R-squered
Adj T
Total | 11.2235331 73 .153747029 Root MSE
1n_price Coef.  Std. Err. t Bt [95% Conf. Imterval]
forsign 0741515 .1000347 0.74  0.461  -.1252639 .273567
_cons 8.618587  .054543% 158.01  0.000 8.50885¢ [ 8.727319
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(1 (2} (2} (4 (5} (€}
in price in_price in price in_price in_price in price
length met~s 2.02050% =+ 2_317€0% 5+ -1.54830
[0.4€08€) [0.45£35) [1.0€€52)

weight kg 0.00055%* 0.00052% & 0.00138%8*
(0.00010} (0.00010] (0.00025]

foreign 0.07415 0.53527%* 0.240275 8+ 0.525982%%
{0.10002) [0.0B441) [0.0SE07) (0.082311)

_cons 7. 12LTEH** 7.B1732% 4 B. €155+ 7. 0S0BEH +* €._015EL=s* 7.9250558
[0.24851) [0.155851) [0.05454) [0.1€585) [0_38181) [0.4B€47)
2 0.210€2 0.25208 0.00757 0.54804 0.25082 0.56858
u 74 74 74 74 74 74
==z 8. 85547 7.54522 11.13852 5.07258 €.82712 4.84183

Standard errors in parentheses
# p20.05, *% p=0.01, #%% p<0.001

(D, (2) and (3) confirm correlations, but notably se(gfo,e,-gn) > Bfo,e/gn (noise > signal)
(D and (5): SSR |, SSTiength and SSToreign UNchanged
but se(,@engm) 1 because of strong collinearity with foreign
and se(ﬁfo,e,-gn) J so that effect of SSR dominates collinearity with length
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@ Stellenbosch

(1} (2} 2] 143 (51 (€}
1n price 1n_price 1n_price 1n_price 1n_price 1n_price
length met~s 2.02050% =+ 2.217€05 = -1.84820
[0.4€08€) [0.45£35) [1.0€€52)

weight_kg 0.00055%%* 0.00052% 4= 0.001234%%*
{0. 00010} {0.00010) {0.00025)

foreign 0.07415 0.535274 4+ 0.44027%%* 0.52582%%*
{0.10002) [0.08441) 0. 08€07) {0.08211)

_cons 7121764+ 7.B17324 4 B_E1B554** 7.0908E" *= €.015815%s 7.92505%%*
[0.24881) {0.155851) [0.05454) [0.1£388) (0. 25181} [0.48€47)
2 0.210€2 0.29208 0.00757 0.54804 0.28082 0.5€858
i1 74 74 74 74 74 74
==z B.85547 7.94522 11.12852 5.07258 €.82712 484182

Standard errzors in parentheses
* p<0.0S, *% p<0.01, 4% pe0.00L

(2) and (4): SSR |, SSTyeignt and SSTpyrejgn UNchanged
similar to before

() and 4): Broreign > O, Soreignweight < O, SO that simpler regression was downward
biased

Controlling for foreign Bwe,-gm
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(1) 12) 12} 14} (5} (€}
In_price In_price 1n price In_price In_price 1n price
length met~s 2.02050% =% 2.317€0*s —1.594820
(0.4€09€) (0.49€2359) (1.0€€52)

weight_kg 0.00055% 0.00082% % 0.00134%* =
(0.00010) (0.00010) (0.00025)

foreign 0.07415 0.535237% %% 0.44027%%* 0.52982%*% =
(0.10002) (0.0B8441) (0.09€07) (0.08311)

_cons T.1217€*** T.B1732%%% B.EL1BSG*** T7.090B€*** €.01581%%#* T7.825085%% %
(0.24851) (0.15581) (0.05454) (0.1€9889) (0.235181) (0.48€47)
2 0.210€2 0.25208 0.00757 0.54804 0.3so082 0.5€85%
i 74 74 74 74 74 74
s=x B.B5947 7.94522 11.13852 5.07258 €.83712 4.84152

Standard errors in parentheses
* pe0.05, ** p<0. 0L, *** p<0.00l

(6) and (6): SSR | SSTiength. SSTweight aNd SST foreign UNChanged
But the very high collinearity between weight and length make the latter
standard error grow very large
(6) and (6): Biength > O, Sforeign:tength > O, SO that simpler regression was perhaps upward
biased
Controlling for foreign | Bwe,vgm: it a large negative value
But does it make sense? (It is not statistically significant - next chapter)
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(| Stellenbosch

estat vif

Variable VIF 1/VIF
weight kg 9.92 0.100839
length met~s 2] 015 3] 0.104932
foreign 1.54 0.647716

Mean VIF 7.00

In the final regression we detect high levels of multicollinearity

What if weight and length matter in the PRF, but we cannot distinguish
their effects in a small sample of n = 74 with high collinearity?

14-02-2024 75777
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QUESTION

What would happen if we added a

variable that was not correlated to
any other x's?
Q To coefficients?

Q To standard errors?
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Gauss-Markov Theorem

Why use OLS? - it is unbiased under MLR1-4

But there are other unbiased linear estimators for 3
OLS is BLUE - Best Linear Unbiased Estimator

‘Best” - it has the smallest variance (most efficient) if we assume MLR5
Gauss-Markov Theorem

Among all linear unbiased estimators, the OLS estimator has smallest
variance - given that MLR1-MLR5 hold

Homoskedasticity got us “best”

Heteroskedasticity doesn't affect bias of coefficients, but biases the
standard errors that we calculated because we do not observe all
samples

We no longer have the "best” estimator if MLR 5 fails

Dieter von Fintel cs: Chap. 2 & 3 14-02-2024
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