The simple and multiple regression model

Chapters 2 & 3: Introductory Econometrics 771

Prof Dieter von Fintel

Department of Economics Stellenbosch University

14 February 2024

Dieter von Fintel

Intro Metrics: Chap. 2 & 3

14-02-2024 1 / 77

Overview

forward together sonke siya phambi saam vorentoe

- Conditional expectation \rightarrow linear regression
- When does regression have causal or ceteris paribus interpretation?
- Population vs Sample Regression Functions

- The Ordinary Least Squares Estimator
- Derivation
- Mechanics and interpretation of OLS with multiple regressors
- Properties of OLS estimators
- Goodness of fit
- Partialling out interpretation
- Expected values and variances of OLS
- Assumptions to ensure that OLS is unbiased/causal
- Including too many variables
- Sample variation in OLS estimates
- Imperfect multicollinearity
- Variances in misspecified models
- Gauss-Markov Theorem

14-02-2024 2 / 77

Conditional expectation function

Different distributions of

 $Y = wage \text{ at } x = educ = 1 \cdots 20$ $\rightarrow \text{ distributions around CEF}$

Deterministic vs statistical
How to estimate the slope of the CEF?

$$\widehat{\beta}_1 = \frac{\partial E(Y|X)}{\partial x}$$

...it quantifies the **relationship** between Y = wage and X = educ

tellenhosch

Definition of the regression model

forward together sonke siya phambili saam vorentoe

"Explain y = wage in terms of x = educ"

Functional form: "Linear Regression"

$$y = \beta_0 + \beta_1 x_{main} + u$$

- β₀: y intercept "mean wage of individuals with 0 education"
 CONDITIONAL mean
- $\beta_1 = \frac{\Delta wage}{\Delta educ}$: slope of a straight line $\Delta wage$ for one year $\Delta educ$
- u are unobservables social networks, soft skills, ability, motivation, etc
 - Ceteris paribus???
- Linearity?
 - In parameters, not in variables (more later)
 - A marginal change in *x* (say, education) has the same impact on *y* (say, wage), regardless of the level of *x*
 - Realistic? We will see how to deal with this later.

When is β_1 a *ceteris paribus* effect?

- Stellenbosch UNIVERSITY IVUNIVESITH Samr vorentoe
- Hold other observables (x_{other}) & unobservables (ε) constant as x_{main} changes
 - Think of $u = \beta_{other} X_{other} + \varepsilon \Rightarrow y = \beta_0 + \beta_1 X_{main} + \beta_{other} X_{other} + \varepsilon$
 - Split u into "information" and "randomness" that is uncorrelated with x_{main}
 - If *x_{other}* is part of *u* (OR: *x_{other}* **also** determines *y*) **AND** correlates with *x_{main}*, cannot "hold it constant" unless somehow "taken out of *u*"
- ▶ **POPULATION REGRESSION FUNCTION**: β_1 is "true" (not necessarily known) relationship if... all relevant *x*'s included (x_{main}); or only "randomness" (ε) is left in *u*, so that $Cov(u; x_{main}) = Cov(\varepsilon; x_{main}) = 0$

$$y = \beta_0 + \beta_1 x_{main} + u$$

$$\Delta y = \beta_1 \Delta x_{main} + \Delta u$$

$$\frac{\Delta y}{\Delta x_{main}} = \frac{\Delta \beta_0}{\Delta x_{main}} + \beta_1 \frac{\Delta x_{main}}{\Delta x_{main}} + \frac{\Delta u}{\Delta x_{main}}$$

$$\frac{\Delta y}{\Delta x_{main}} = 0 + \beta_1 + \frac{\Delta u}{\Delta x_{main}} \Rightarrow \beta_1 = \frac{\Delta y}{\Delta x_{main}} - \frac{\Delta u}{\Delta x_{main}}$$

$$\beta_1 = \frac{\Delta y}{\Delta x} \text{ only if } \frac{\Delta u}{\Delta x} = 0 \text{ or } \frac{\Delta x_{other}}{\Delta x_{main}} = \frac{\Delta \varepsilon}{\Delta x_{main}} = 0$$

State this more formally

- If there is an intercept, it can be shown that E(u) = 0... **always**
- Now what must we assume to obtain "ceteris paribus" estimates?
 - No correlation between *x* and *u*
 - Generalise this to **non-linear relationships** with conditional expectations: E(u|x) = E(u)
 - Mean (non-linear and linear) INDEPENDENCE
 - Average of unobservables is the same, regardless of values of x
 - **Concretely:** for regression to have *ceteris paribus* or **causal** interpretation, average motivation/ability/access to education (absorbed in *u* because it is **not measured/unobserved**) must be the same for people with low and high levels of education (x_{main}) \rightarrow **likely not a good assumption** \rightarrow **estimate of** β_1 **does not necessarily have causal interpretation**
 - How could unobservables influence our estimate relative to the true ("unbiased"/causal/population) value?
 - Often simplified as: E(u|x) = 0 because E(u) = 0
 - Zero conditional mean assumption

tellenhosch

POPULATION regression function

forward together sonke siya phambiti saam vorentoe

- y, x and u are random variables
 - They have a population distribution
 - A "real" set of values that is partially reflected in our sample
 - E(y|x): how the average value of y changes with x in the population
 - In the population, the β are not random
 - They have no distribution, because one true (unbiased/causal/ceteris paribus) population value for them
 - "DATA GENERATING PROCESS": the conditional expectation function is the systematic/deterministic part of PRF, separated from the random component

 $y = \beta_0 + \beta_1 x + u$ $E(y|x) = E(\beta_0 + \beta_1 x + u|x)$ $= E(\beta_0|x) + E(\beta_1 x|x) + E(u|x)$ $= \beta_0 + \beta_1 x + 0$

because if the PRF is fully specified, there is no remaining relationship between *u* and *x*

Dieter von Finte

Intro Metrics: Chap. 2 & 3

Model with 2 independent variables

Suppose the Population Regression Function includes experience according to theory

 $wage = \beta_0 + \beta_1 education + \beta_2 experience + u$

- Taking experience out of the error term, and assume this theory is "enough" to characterise the DGP (ie u is now random and unrelated to all the x's)
 - β_1 is ceteris paribus effect of education on wage holding experience and u fixed
 - β_2 is ceteris paribus effect of experience on wage holding education and u fixed
- But now we have a better estimate of it; it is a **causal** estimate IF we have fully specified the PRF, meaning that E(u|educ; exper) = 0
- Had we left experience out

 $wage = \tilde{\beta}_0 + \tilde{\beta}_1 education + \tilde{u}$ where \tilde{u} contains experience

• If education and experience are correlated, $E(educ|\tilde{u}) \neq 0$ so that $\tilde{eta}_1 \neq eta_1$

Model with *k* independent variables

forward together sonke siya phambili saam vorentoe

If PRF must contain more variables (k of them)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_k x_k + u$$

The zero conditional mean assumption extends to:

$$E(u|x_1,x_2,\cdots,x_k)=E(u|\boldsymbol{x})=0$$

Average of unobservables is zero regardless of each value of each x_j, for example

- Average motivation (contained in u) must be zero at educ = 0 and educ = 1 and... educ = 20
- **AND** average motivation must be zero at exp = 0 and exp = 1 and... exp = 40
- AND similar for all other variables in the PRF

Or simply: independence of all the variables and the unobservable population error

Dieter von Finte

Intro Metrics: Chap. 2 & 3

Sample Regression Function (SRF)

forward together sonke siya phambili saam vorentoe

- Hardly ever have data on the whole population
- Two main data reasons for biased estimation (among others)
 - Not all variables collected (as before): a "column problem"
 - On not sample whole population: a "row problem"
 - Draw representative SAMPLE from population
 - Draw inferences about population based on sample
 - Different sub-samples of data from the same population, estimate of the PRF (= SRF) is different in each case
 - Estimate because know true PRF without full information
 - ▶ $\hat{\beta}$ is therefore also stochastic a random variable $\Rightarrow \hat{\beta}$ has a distribution
 - (remember the distributions around the slope of the CEF?)
 (NOTE: the "hat" emphasises that this is an *estimate* from a sample)

Full information

- Imagine for a moment that educ and age tell us everything about why people get paid what they do...
- Code simulates a fake "population" level dataset that reflects the following PRF:

 $wage = \beta_0 + \beta_1 educ + \beta_2 exper + u$

where $\beta_0 = 10, \beta_1 = 0.5, \beta_2 = 0.1$

STATA CODE

```
clear
set seed 1234
set obs 60000000
gen educ = int(rnormal()*1.4 + 12)
gen age = int(rnormal()*4+40)
gen exper = max(age - educ - 6 -int(rnormal()*0.1),0)
gen u = 0.1*rnormal()
gen wage = 10 + 0.5*educ +0.1*exper +u
drop age
```

tellenhosch

Full information

forward together sonke siya phambili saam vorentoe

- Population of N = 60 million
- "True" population regression function is

wage = $\beta_0 + \beta_1$ education + β_2 exper + u

With full information could estimate β₁ from the PRF without a problem using Ordinary Least Squares (OLS) - more later

Observation	wage	educ	exper	random u								
1	18.63818	11	31	0.0381753								
2	17.58195	9	30	0.0819504								
3	17.20783	11	17	0.0078265								
4	18.22533	11	28	-0.0746732								
5	18.55296	12	26	-0.0470415	. reg wage edu	c evner u						
6	17.37125	11	19	-0.0287531	. Teg wage caa	c exper a						
7	17.56123	13	11	-0.038775	Source	SS	df	MS	Number	r of obs		60000000
8	17.26208	11	19	-0.1379214	Jource	55	u.	115		599999996)	~	99999.00
9	17.77695	11	23	-0.02305	Model	29870427.6	3	9956809.19				0.0000
10	17.60788	8	35	0.1078842	Residual	.000018149	59999996	3.0248e-13			=	1.0000
						1000010115	5555555	5102 100 15		-squared		1.0000
100	18.40646	13	19	0.0064596	Total	29870427.6	59999999	.497840468	5		-	5.5e-07
					Total	250/042/10	33333333	. 457 040400	noor	02		5.50 07
1000	18.24569	12	23	-0.054311	wage	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
								-		1.0000		
100000	18.15609	11	28	-0.1439148	educ	.5	5.27e-11	9.5e+09	0.000		5	.5
	1				exper	.1	1.77e-11		0.000			.1
10000000	17.86163	13	15	-0.1383734	u	1	7.10e-10		0.000			1
	1				cons	10	8.26e-10		0.000	16	3	10
60000000	19.64043	15	22	-0.0595725								<u> </u>

Don't observe randomness

forward together sonke siya phambili saam vorentoe

- Population of N = 60 million
- Estimate Sample Regression Function $\widehat{wage} = \widehat{\beta}_0 + \widehat{\beta}_1 education + \widehat{\beta}_2 exper$
- Only omitting random information (*u*) gives $\widehat{\beta}_1$ close to population β_1

								random u	exper	educ	wage	Observation
								0.0381753	31	11	18.63818	1
								0.0819504	30	9	17.58195	2
								0.0078265	17	11	17.20783	3
								-0.0746732	28	11	18.22533	4
								-0.0470415	26	12	18.55296	5
						c exper	. reg wage edu	-0.0287531	19	11	17.37125	6
							0 0	-0.038775	11	13	17.56123	7
60000000	=	r of obs	Numbe	MS	df	SS	Source	-0.1379214	19	11	17.26208	8
99999.00	>	59999997)	- F(2,					-0.02305	23	11	17.77695	9
0.0000	=	> F	Prob	14635222.5	2	29270445	Model	0.1078842	35	8	17.60788	10
0.9799	=	ared	R-squ	.0099999709	59999997	599982.53	Residual	÷			1 A A	
0.9799	=	-squared	- Adj R					0.0064596	19	13	18.40646	100
.1	=	MSE	Root R	.497840468	59999999	29870427.6	Total	÷				
								÷			1	
	_							-0.054311	23	12	18.24569	1000
Interval]	f.	[95% Con	P> t	t	Std. Err.	Coef.	wage	÷				
				_				-0.1439148	28	11	18.15609	100000
.5000265		.4999889	0.000	5.2e+04	9.59e-06	.5000077	educ	÷			: ()	
.1000073		.0999947	0.000	3.1e+04	3.22e-06	.100001	exper	-0.1383734	15	13	17.86163	10000000
10.00017		9.999582	0.000	6.7e+04	.0001503	9.999876	_cons	÷			1.1	
	_				_			-0.0595725	22	15	19.64043	60000000

+Don't observe *exper* (part of PRF)

forward together sonke siya phambili saam vorentoe

- Population of N = 60 million
- Estimate Sample Regression Function

 $\widehat{wage} = \widehat{\beta}_0 + \widehat{\beta}_1 education$

Omitting non-random information (exper) gives $\widehat{\beta}_1$ not close to true β_1

Observation	wage	educ	exper	random u
1	18.63818	11	31	0.0381753
2	17.58195	9	30	0.0819504
3	17.20783	11	47	0.0078265
4	18.22533	11	28	-0.0746732
5	18.55296	12	26	-0.0470415
6	17.37125	11	49	-0.0287531
7	17.56123	13	44	-0.038775
8	17.26208	11	19	-0.1379214
9	17.77695	11	- 23	-0.02305
10	17.60788	8	35	0.1078842
				÷
100	18.40646	13	19	0.0064596
				÷
	1.1			÷
1000	18.24569	12	23	-0.054311
	: (0)			÷
100000	18.15609	11	- 28	-0.1439148
	1.1			÷
10000000	17.86163	13	+5	-0.1383734
	4			÷
60000000	19.64043	15	22	-0.0595725

Source	SS	df	MS		r of obs	=	6000000
Mode 1	19617090.2	1	19617090.2		59999998)	>	99999.00
Residual	10253337.4	59999998	.170888962			-	0.656
					-squared	-	0.656
Total	29870427.6	59999999	.497840468	Root	MSE	-	.4133
wage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval
educ	.4000193	.0000373	1.1e+04	0.000	.399946	1	.400092
cons	13.34987	.0004327	3.1e+04	0.000	13,3490	2	13.3507

. correl (obs=60.000.000)

_	educ	exper	u	wage
educ	1.0000			
exper	-0.3357	1.0000		
u	0.0001	0.0000	1.0000	
wage	0.8104	0.2635	0.1418	1.0000

Dieter von Finte

+take one sample of n = 1000

- Sample of **first** n = 1000 from population of N = 60 million
- Estimate Sample Regression Function

$$\widehat{wage} = \widehat{\beta}_0 + \widehat{\beta}_1 education$$

• Omitting the > 59*million* observations gives different $\hat{\beta}_1$ to before

Observation	wage	educ	ехрег	random u							
1	18.63818	11	31	0.0381753							
2	17.58195	9	- 30	0.0819504							
3	17.20783	11	17	0.0078265							
4	18.22533	- 11	- 28	-0:0746732							
5	18.55296	12	26	-0:0470415							
6	17.37125	11	- 19	-0.0287531							
7	17.56123	13	- 11	-0.038775	. reg wage edu	uc if _n<=1000					
8	17.26208	11	+9	-0.1379214		_					
9	17.77695	11	23	-0.02305	Source	SS	df	MS	Number of obs	=	1,000
10	17.60788	8	- 35	0.1078842					F(1, 998)	=	1828.98
				÷	Model	331.79645	1	331.79645	Prob > F	=	0.0000
100	18.40646	13	19	0:0064596	Residual	181.048127	998	.181410948	R-squared	=	0.6470
				÷					Adj R-squared	=	0.6466
				÷	Total	512.844576	999	.513357934	Root MSE	=	.42592
1000	18.24569	12	23	-0:054311							
÷	÷	÷	÷	÷							
100000	18.15609	11	28	-0.1439148	wage	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
÷	÷	÷	÷	÷		_					
10000000	17.86163	13	15	-0.1383734	educ	.3990291	.0093304		0.000 .380719		.4173386
÷	÷	÷	÷	÷	_cons	13.36459	.1080214	123.72	0.000 13.1526	1	13.57656
6000000	19.64043	15	22	-0.0595725						1	

Dieter von Fintel

tellenhosch

+take 2^{nd} sample of n = 1000

- Sample of last n = 1000 from population of N = 60 million
- Estimate Sample Regression Function

 $\widehat{wage} = \widehat{\beta}_0 + \widehat{\beta}_1 education$

Omitting the > 59million observations gives a different β₁ to before (but with good sample design, it may not be that far away)

Observation	wage	educ	exper	random u								
1	18.63818	-11	31	0.0381753								
2	17.58195	9	30	0.0819504								
3	17.20783	11	17	0.0078265								
4	18.22533	11	28	-0.0746732								
5	18.55296	12	26	-0.0470415								
6	17.37125	11	19	-0.0287531								
7	17.56123	13	11	-0.038775	reg wage ed	ucif n> N-1	999					
8	17.26208	11	19	-0.1379214	. reg mage cu		000					
Ð	17.77695	11	23	-0.02305	Source	SS	df	MS	Numbe	r of obs	-	1,000
10	17.60788	8	35	0.1078842					- F(1,		=	1725.41
÷	÷	÷	÷	÷	Model	318.019237	1	318,019237			=	0.0000
100	18.40646	13	19	0.0064596	Residual	183.947044	998	.184315675			=	0.6335
÷	÷	÷	÷	÷						-squared	=	0.6332
÷	÷	÷	÷	÷	Total	501,966281	999	. 502468749				.42932
1000	18.24569	12	23	-0.054311	locar	501.500201	555	. 50240074	nooc			.42552
÷	÷	÷	÷	÷								
100000	18.15609	11	28	-0.1439148	wage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
÷	÷	÷	÷	÷				-		[
10000000	17.86163	13	15	-0.1383734	educ	.3932891	.0094682	41.54	0.000	. 374709	2	.4118689
	1			÷	cons	13.4136	.1091353	122.91	0.000	13.1994		13.62776
60000000	19.64043	15	22	-0.0595725								

Dieter von Fintel

14-02-2024 16 / 77

+take 3^{rd} random sample of n = 1000

Estimate Sample Regression Function

 $\widehat{wage} = \widehat{\beta}_0 + \widehat{\beta}_1 education$

Omitting the > 59million observations gives a different β₁ to before (but with good sample design, it may not be that far away)

. sample 1000, count (59,999,000 observations deleted)

. reg wage educ

Source	SS	df	MS	Number of obs		1,000
Model	325,887479	-1	325.887479	F(1, 998)	1	1789.27 0.0000
Residual	181.769655	998	.182133923		2	
				Adj R-squared	=	0.6416
Total	507.657135	999	.5081653	Root MSE	=	.42677
wage	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
educ	.4107828	.0097112	42.30	0.000 .3917	26	.4298395
_cons	13.22154	.1127518	117.26	0.000 13.000	28	13.4428
					-	the second se

stellenbosch

Sample Regression Functions

forward together sonke siya phambili saam vorentoe

In summary

- \blacktriangleright We usually have **column** problems (omitted variables) that give us $\widehat{\beta} \neq \beta$
- ▶ We usually observe **one set of rows** that deviates from the population
 - Omitting rows can add to the column problem if the sample is **non-randomly** collected
 - Omitting rows is less problematic with random sampling
 - If we were to observe a **different** set of rows in our sample, we would get a different $\hat{\beta}$ (even ignoring the column problems)
 - \blacktriangleright Our sample regression function therefore has **stochastic** estimates of $\widehat{\beta}$ with a distribution

SRF – an illustration using census

forward together sonke siya phambili saam vorentoe

"Population" - note: we are ignoring column problems for now

. reg l_inc educ

Source	SS	df	MS	Number o: F(1, 154		1,540,893 99999.00
Model Residual	1034722.29 2097529.44	1 1,540,891	1034722.29 1.36124453	Prob > F R-squared Adj R-sq	= 1 =	0.0000 0.3303
Total	3132251.73	1,540,892	2.03275228	Root MSE	=	1.1667
l_inc	Coef.	Std. Err.	t	P> t [!	95% Conf.	Interval]
education cons	.2096349 7.782751	.0002404			2091636	.2101062 7.786789

2x Random samples: 0.05% observations 🐺 Stellenbosch

77 324.8	er of obs =		MS	df	SS	Source
0.000	768) =		447.772298	1	447.772298	Model
0.297	uared =		1.37856794	768	1058.74018	Residual
0.296	R-squared =		1.57050754	700	1050.74010	Nesiduai
1.174			1.95905393	769	1506.51247	Total
Testa and	1059 26	-		24.2 Eve	a	1 /1-1
Interval	[95% Conf.	P> t	t	Std. Err.	Coef.	l_inc
.216338	.1738394	0.000	18.02	.0108248	.195089	education
8.10493	7.742949	0.000	85.94	.0921992	7.923942	cons
77 472.9	er of obs = 768) =	- F(1,	MS	df	SS	Source
472.9	768) = >F =	- F(1, 54 Prob	584.256764	1	584.256764	Model
472.9 0.000 0.381	768) = >F = uared =	F(1, 54 Prob 12 R-sq				
472.9 0.000 0.381 0.380	768) = >F = uared = R-squared =	— F(1, 54 Prob 12 R-sq — Adj	584.256764 1.23540542	1 768	584.256764 948.791361	Model Residual
472.9 0.000 0.381	768) = >F = uared = R-squared =	— F(1, 54 Prob 12 R-sq — Adj	584.256764	1	584.256764	Model
472.9 0.000 0.381 0.380 1.111	768) = >F = uared = R-squared =	— F(1, 54 Prob 12 R-sq — Adj	584.256764 1.23540542 1.99356063	1 768	584.256764 948.791361	Model Residual
472.9 0.000 0.381 0.380 1.111	768) = > F = uared = R-squared = MSE =	F(1, F(1, Prob 2 R-sq Adj 53 Root	584.256764 1.23540542 1.99356063 t	1 768 769	584.256764 948.791361 1533.04812	Model Residual Total

"Distribution" of \widehat{eta}_1 from 100 different SRFs $\begin{subarray}{c} Stellenbosch \end{subarray} \end{subarray}$

- Sample 0.5% from population (larger sample size n)
- Sample 0.05% from population (smaller sample size n)
 - distribution is wider in smaller samples
 - In Chapter 4: use distribution to assess the validity of our estimates

Variabl	e Obs	Mean	Std. Dev.	Min	Max
b_5 b_				.200028 .1844666	

Intro Metrics: Chap. 2 & 3

Deriving OLS Estimates

- We do not know population parameters or the distribution
- Need to find an mathematical estimators to approximate these from a sample
- Ordinary Least Squares Estimator
 - Carl Friedrich Gauss, University of Göttingen
 - An official partner to our Economics Department

- Approach is to find the best fitting line that minimises the sum of squared residuals $(\sum_{i=1}^{N} \hat{u}_i^2)$

Stellenbosch

Obtaining OLS estimates

forward together sonke siya phambili saam vorentoe

Take the following SRF

 $y_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1} x_{1i} + \widehat{\beta}_{2} x_{2i} \cdots + \widehat{\beta}_{k} x_{ki} + \widehat{u}_{i} = \widehat{y}_{i} + \widehat{u}_{i}$ SAMP. resid. $= \widehat{u}_{i} = y_{i} - \widehat{y}_{i}$ $= y_{i} - \left(\widehat{\beta}_{0} + \widehat{\beta}_{1} x_{1i} + \widehat{\beta}_{2} x_{2i} \cdots + \widehat{\beta}_{k} x_{ki}\right)$ POP. unobs. $= u_{i} = y_{i} - \left(\beta_{0} + \beta_{1} x_{1i} + \beta_{2} x_{2i} \cdots + \beta_{k} x_{ki} + \cdots + \beta_{(k+i)} x_{(k+i)i}\right)$

- SAMPLE residual not the same as **POPULATION** unobservable, unless can control for all x_j : $\hat{u} \neq u$
- Minimise sum of squared residuals using optimisation techniques
- Get the fitted model to be as close to the data as possible

$$\min\sum_{i=1}^{n}\widehat{u}_{i}^{2}=\min\sum_{i=1}^{n}\left[\widehat{y}_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1}x_{1i}+\widehat{\beta}_{2}x_{2i}\cdots+\widehat{\beta}_{k}x_{ki}\right)\right]^{2}$$

Minimisation with multivariate algebra in Appendix E and SunLearn 200

Derivation of OLS estimates

forward together sonke siya phambili saam vorentoe

Express the OLS model in matrix and vector notation:

$$\mathbf{y} = X\widehat{\boldsymbol{\beta}} + \widehat{\boldsymbol{u}} = \widehat{\beta}_{0} + \widehat{\beta}_{1}\mathbf{x}_{1} + \dots + \widehat{\beta}_{k}\mathbf{x}_{k} + \widehat{\boldsymbol{u}}$$

Derivation

î

 $X' \lambda$

$$\Rightarrow \hat{\boldsymbol{u}} = \boldsymbol{y} - X\hat{\boldsymbol{\beta}}$$

$$\hat{\boldsymbol{u}}'\hat{\boldsymbol{u}} = \left(\boldsymbol{y} - X\hat{\boldsymbol{\beta}}\right)'\left(\boldsymbol{y} - X\hat{\boldsymbol{\beta}}\right) = \hat{u}_{1} \times \hat{u}_{1} + \hat{u}_{2} \times \hat{u}_{2} + \cdots \hat{u}_{n} \times \hat{u}_{n} = \sum_{i=1}^{n} \hat{u}_{i}^{2}$$

$$= \underbrace{\boldsymbol{y}'\boldsymbol{y}}_{(1\times n)(n\times 1)} - \underbrace{\hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{y}}_{(1\times n)(n\times 1)} - \underbrace{\boldsymbol{y}'\boldsymbol{X}\hat{\boldsymbol{\beta}}}_{(1\times n)(n\times 1+1)(k+1\times n)(n\times 1)} + \underbrace{\boldsymbol{y}'\boldsymbol{X}\hat{\boldsymbol{\beta}}}_{(1\times n)(n\times 1)} + \underbrace{\hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\hat{\boldsymbol{\beta}}}_{(1\times n)(n\times k+1)(k+1\times 1)} + \underbrace{\hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\hat{\boldsymbol{\beta}}}_{(1\times k+1)(k+1\times n)(n\times k+1)(k+1\times 1)} + \underbrace{\hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\hat{\boldsymbol{\beta}}}_{(1\times k+1)(k+1\times n)(n\times k+1)($$

IF (X'X) is invertible: X has full column rank (no perfect linear relationships) SIMPLE REGRESSION: $\hat{\beta}_1 = \frac{Cov(y;x_1)}{Var(x_1)} \Rightarrow Var(x_1) \neq 0$ **MULTIPLE REGRESSION**: typical element of $\hat{\beta}$ is $\hat{\beta}_j = \frac{Cov(y;\tilde{x}_j)}{Var(\tilde{x}_j)} \Rightarrow Var(x_j) \neq 0$, where \tilde{x}_j is "partialled out" (later)

14-02-2024 25/77

No estimate if all values of x_i are the same (denominator of $\hat{\beta}_1$)

A scatterplot of wag	ge against education when $educ_i = 12$	for all <i>i</i> .
vage		
	•	
	1	
0	12	educ

Copyright © 2009 South-Western/Cengage Learning

Fitted Values and Residuals

forward together sonke siya phambiti saam vorentoe

$$y_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i + \widehat{u}_i = \widehat{y}_i + \widehat{u}_i$$
$$\widehat{u}_i = y_i - \widehat{y}_i$$

NOTE: with the hat they are *predictions* and *residuals* (not the population error term)

Dieter von Finte

Intro Metrics: Chap. 2 & 3

14-02-2024 27 / 77

Properties of OLS on Any Sample of Data 🐺 Stellenbosch

- OLS is an estimator (a mathematical rule) that uses a sample to find estimates for E(y|x) - not reaching the population estimate exactly
- OLS estimates differ for each sample used: How well does it perform on the specific sample available to researcher?
- salary = regression line
- \hat{u} = residuals
 - Negative: function overpredicts
 - Positive: function underpredicts

Fitted Values and Residuals for the First 15 CEOs								
obsno	roe	salary	salaryhat	uhat				
1	14.1	1095	1224.058	-129.0581				
2	10.9	1001	1164.854	-163.8542				
3	23.5	1122	1397.969	-275.9692				
4	5.9	578	1072.348	-494.3484				
5	13.8	1368	1218.508	149.4923				
6	20.0	1145	1333.215	-188.2151				
7	16.4	1078	1266.611	-188.6108				
8	16.3	1094	1264.761	-170.7606				

14-02-2024 29 / 77

Properties of OLS

- Algebraic
 - Residuals sum to zero or average to zero
 - By implication, the average of actual y values equals the average of fitted values

$$\sum_{i=1}^{n} \widehat{u}_i^2 = \frac{1}{n} \sum_{i=1}^{n} \widehat{u}_i^2 = 0$$

- Sample covariance between residuals and variables is zero
 - Does not imply Cov(u; x) = 0 in **population**
 - $Cov(\hat{u}; x) = 0$ in **sample** does not that imply satisfying E(u|x) = 0 in the population
 - OLS estimation imposes this assumption on the sample; we get it "wrong" (ie we get bias) if it does not also hold in the population

$$Cov(\widehat{u}; x_j) = \frac{1}{n} \sum_{i=1}^n x_{ij} \widehat{u}_i = 0 \text{ for } j = 1 \cdots k$$

 $(\overline{\mathbf{x}};\overline{y}) = (\overline{x}_1, \overline{x}_2, \cdots, \overline{x}_k, \overline{y})$ is always on the regression line

Properties of OLS

- Total sum of squares (SST)
 - The total variation in y
- Explained sum of squares (SSE)
 - The variation in y explained by the model
- Residual sum of squares (SSR)
 - The variation in y that is not explained, and contained in residuals

$$SST = SSE + SSR$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

$$\sigma_y^2 = \frac{SST}{n-1} = \text{variance of } y$$

forward together sonke siya phambili saam vorentoe

Goodness of fit

- Small residuals: model fits the specific **sample** data well
 - Small SSR means a "better" sample fit
 - Could get a different *R*² in a different sample
- R² is a measure of sample fit
 - Not how well the data fits the population
 - Not how well the model fits the population
 - Ratio of explained variance to total variance in sample

$$SST = SSE + SSR$$
$$R^{2} = \frac{SSE}{SST} = 1 - \frac{SSR}{SST} \text{ where } 0 \le R^{2} \le 1$$

- Adding more variables: $SSR \downarrow \Rightarrow R^2 \uparrow$ as soon as you add more (even irrelevant) variables to the model
- Also, the squared correlation coefficient between y and \widehat{y}
 - Intuitively, how related is the prediction from the model to the observed data

tellenhosch

R^2 from our SRF experiment

förward together sonke siya phambili saam vorentoe

Small probability of drawing sample with low or high R²

Dieter von Finte

Intro Metrics: Chap. 2 & 3

14-02-2024 32 / 77

- We tend to obtain low R² in cross section analyses
- Does this mean we have a bad equation?
 - No, we just have a lot that is unexplained by the factor we have included in the model
 - We may still have the correct relationship between *x* and *y* if zero-conditional mean assumption holds.
- Be cautious to think a high R^2 means you have a good model
 - More later

"Partialling Out" interpretation of OLS

Consider 2 variable case

$$y_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i} + \widehat{u}_i$$

 Suppose we have a second regression which removes the overlap between x₁ and x₂

$$x_{1i} = \widehat{\alpha}_0 + \widehat{\alpha}_1 x_{2i} + \widehat{r}_i$$

- $Cov(\hat{r}; x_2) = 0$ by properties of OLS x_2 is "partialled out"
- \hat{r} is a "new version" of x_1 that removes x_2
- In next slide we show that $\hat{\beta}_1 = \frac{Cov(\hat{r},y)}{Var(\hat{r})}$ or the regression of r on y
- In other words: β₁ measures the effect of x₁ on y after removing their shared correlation with x₂
 - Holding *x*² constant, *ceteris paribus*

forward together sonke siya phambiti saam vorentoe

Partialling out

forward together sonke siya phamb saam vorentoe

Vector notation, no $\hat{\beta}_0$ for simplicity $\mathbf{y} = \hat{\beta}_1 \mathbf{x}_1 + \hat{\beta}_2 \mathbf{x}_2 + \hat{\mathbf{u}}$ Stacking the explanatory vectors in columns gives $X = [x_1 \ x_2]$ By matrix multiplication $X'X = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1'\mathbf{x}_1 & \mathbf{x}_1'\mathbf{x}_2 \\ \mathbf{x}_2'\mathbf{x}_1 & \mathbf{x}_2'\mathbf{x}_2 \end{bmatrix}$ Recall that $X'X\widehat{\beta} = X'\mathbf{y} \Rightarrow$ "stacked" version of the OLS equations: $\begin{bmatrix} \mathbf{x}_1'\mathbf{x}_1 & \mathbf{x}_1'\mathbf{x}_2 \\ \mathbf{x}_2'\mathbf{x}_1 & \mathbf{x}_2'\mathbf{x}_2 \end{bmatrix} \begin{bmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1'\mathbf{y} \\ \mathbf{x}_2'\mathbf{y} \end{bmatrix}$ Write out first row as: $\mathbf{x}_1'\mathbf{x}_1\widehat{\beta}_1 + \mathbf{x}_1'\mathbf{x}_2\widehat{\beta}_2 = \mathbf{x}_1'\mathbf{y}$ $\mathbf{x}_{1}^{\prime}\mathbf{x}_{1}\widehat{\beta}_{1} = \mathbf{x}_{1}^{\prime}\mathbf{y} - \mathbf{x}_{1}^{\prime}\mathbf{x}_{2}\widehat{\beta}_{2}$ $\widehat{\beta}_1 = (\mathbf{x}_1'\mathbf{x}_1)^{-1}\mathbf{x}_1'\mathbf{y} - (\mathbf{x}_1'\mathbf{x}_1)^{-1}\mathbf{x}_1'\mathbf{x}_2\widehat{\beta}_2$ $=\left(\boldsymbol{x}_{1}^{\prime}\boldsymbol{x}_{1}\right)^{-1}\boldsymbol{x}_{1}^{\prime}\left(\boldsymbol{y}-\boldsymbol{x}_{2}\widehat{\beta}_{2}\right)$ $= (\boldsymbol{x}_1'\boldsymbol{x}_1)^{-1}\boldsymbol{x}_1'(\widehat{\boldsymbol{r}}_1)$

To get $\hat{\beta}_1$, run a **simple** OLS on "partialled out" x_1 ; similar for $\hat{\beta}_2$

Illustration

forward together sonke siya phambili saam vorentoe

- How can we see the "partial effect interpretation" of the coefficient on education?
- reg lwage educ exp

Source	SS	df	MS		Number of obs F(2, 23433)	
Model Residual	8688.99642 20724.4959		2 4344.49821 433 .884414965		Prob > F = 0.00 R-squared = 0.29	= 0.0000 = 0.2954
Total	29413.4923	23435	1.25510955		Root MSE	= .94043
lwage1	Coef.	Std. E	irr. t	P> t	[95% Conf.	Interval]
educ exp _cons	.184121 .0262852 324087	.00186 .0005 .02747	75 45.71	0.000	.1804569 .0251581 3779439	.187785 .0274123 2702301

Remove shared effect of educ and exper

forward together sonke siya phambili saam vorentoe

- "Purify" the overlap from educ to get "educ only"
 - . reg educ exp if e(sample)==1

Source	SS	df		MS		Number of obs F(1, 23434)		23436
Model Residual	114220.396 253094.23	1 23434		220.396 L0.8003		Prob > F R-squared Adj R-squared	=	0.0000
Total	367314.626	23435	15.0	6737626		Root MSE		3.2864
educ	Coef.	std.	Err.	t	P> t	[95% Conf.	In	terval]
exp _cons	171537 13.03032	. 001 . 044		-102.84 293.25	0.000 0.000	1748064 12.94322		1682676 3.11741

. predict r, res (290 missing values generated)

- An aside: if e(sample)==1 limits sample to same observations used in previous estimates
- An aside: after we have run estimates, we can store certain aspects of the model as variables with predict, in this case we create the variable r which is the res(iduals) from the regression

Dieter von Finte

Intro Metrics: Chap. 2 & 3

forward together sonke siya phambil saam vorentoe

Use "purified" educ (residuals from previous equation)

. reg lwage r

Source	SS	df	MS		Number of obs F(1, 23434)	
Model Residual	8580.02727 20833.465		80.02727 89027269		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2917
Total	29413.4923	23435 1.	25510955		= .94288	
lwage1	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
r _cons	.184121 1.951492	.0018742 .0061591	98.24 316.85		.1804474 1.93942	.1877945 1.963565

The **simple** regression with the "purified" educ, gives us almost identical estimates to the **multiple** regression that included both educ and exper

Comparison: Simple & Multiple Regression Stelenbosch

forward together sonke siya phambili saam vorentoe

Simple Regression: $\tilde{y}_i = \tilde{\beta}_0 + \tilde{\beta}_1 x_{1i}$ Multiple Regression: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$ Can be compared by: $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \hat{\delta}$ where $\hat{\delta}$ is the coefficient of regressing x_2 on x_1

Multiple regression simplifies to simple regression only if

- $Cov(x_2; y) = 0 \text{ or } \widehat{\beta}_2 = 0$
- $Cov(x_2; x_1) = 0 \text{ or } \widehat{\delta} = 0$
- We will use this formula to argue about bias in estimating models that have omitted variables

Illustration: simple vs multiple

Stellenbosch

forward together sonke siya phambili saam vorentoe

reg lwage educ

Source	ce SS df MS				Number of obs F(1, 23434)	
Model Residual	6841.02182 22572.4705		41.02182 63235916		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2326
Total	29413.4923	23435 1.	25510955		Root MSE	= .98145
lwage1	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
educ _cons	.1364713 .7192268	.0016194 .0159658		0.000 0.000	.1332972 .6879327	.1396454 .7505208
reg lwage ed	duc exp					
Source	SS	df	MS		Number of obs F(2, 23433)	= 23436 = 4912.28
Model Residual	8688.99642 20724.4959		44.49821 84414965		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2954
Total	29413.4923	23435 1.	25510955		Root MSE	= .94043
lwage1	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
educ exp _cons	.184121 .0262852 324087	.0018693 .000575 .0274771	45.71	0.000 0.000 0.000	.1804569 .0251581 3779439	.187785 .0274123 2702301

Find $\widehat{\delta}$ and put it all together...

forward together sonke siya phambili saam vorentoe

. reg exp educ if e(sample)==1

Source	SS	df	MS		Number of obs F(1, 23434)	= 23436
Model Residual	1207072.88 2674681.49 2		07072.88 4.136788		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3110
Total	3881754.37	23435 16	5.639188		Root MSE	= 10.683
exp	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
educ _cons	-1.812791 39.692	.0176276		0.000 0.000	-1.847342 39.35135	-1.778239 40.03265

 $\widetilde{\beta}_1 = \widehat{\beta}_1 + \widehat{\beta}_2 \widehat{\delta} \\ 0.1364713 = 0.184121 + 0.0262852 \times -1.812791$

- Note differences due to rounding
- What does this tell us?

Dieter von Finte

Expected Values & Variances of $\widehat{oldsymbol{eta}}_{OLS}$

Up to now: used a "formula" to find out a relationship between x and y

- But the result depends on the **one** sample drawn from many possible samples that make up the population
- Different estimates of $\hat{\beta}$, depending on our sample
 - OLS estimates are therefore also random variables with a distribution
 - Which have both expected values and a variances
 - Objective:
 - Show under which circumstances OLS is unbiased and efficient at estimating (unknown) population model
 - For this we need assumptions
 - SLR 1-4 (Simple Linear Regression)
 - MLR 1-4 (Multiple Linear Regression)

OLS assumptions

forward together sonke siys phamb saam vorentoe

SLR1/MLR1 – Linearity in all *k* + 1 parameters

- Linear relationship between (perhaps non-linearly transformed) variables ($\widehat{\beta}$ to the power 1)
- Must assume a population model: $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u$
- If the PRF were non-linear in *parameters*, OLS is not the right estimator
- SLR2/MLR2 Random sampling ("the row problem")
 - A **random** sample from the population for these random variables $\{(x_{ij}; y_i) : i = 1, 2, \dots, n \text{ and } j = 1, \dots, k\}$
 - Sample size = *n*; number of variables = *k*
 - PRF "holds" for **each** unit in the sample \Rightarrow add a sub-script: $y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$ for $i = 1, \dots, n$

OLS assumptions

- SLR3 Sample variation of explanatory variable
 - Any explanatory variable (x_j) may not be the same value for all observations (i)
 - Otherwise impossible to compute OLS estimate $\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$
 - $Var(x) \neq 0 \Leftrightarrow (X'X)$ cannot be inverted
 - NO INFORMATION in variable to distinguish between units of analysis
- MLR3 No perfect multicollinearity cannot estimate if this fails
 - No exact linear relationship among independent variables ⇔ (X'X) cannot be inverted
 - Eg including expenditure in Rands and expenditure in Dollars in same model
 - Eg including expenditure A, expenditure B and total expenditure (A+B)
 - NO NEW INFORMATION by adding a variable
 - Column vector (**1** in X) to estimate $\hat{\beta}_0$ is constant, so that $Var(x_j) \neq 0$
 - Need more observations than regressors
 - Can you draw a unique straight line through one datapoint?

An example of perfect multicollinearity

forward together sonke siya phambili saam vorentoe

- One variable can be expressed as an exact linear combination of other variables in the model
- Potential Experience = Age Education 6 by Mincer's (1974) definition and a possible PRF:

$$log(wage) = \beta_0 + \beta_1 Exper + \beta_2 Educ + \beta_3 Age + u$$

= $\beta_0 + \beta_1 (Age - Educ - 6) + \beta_2 Educ + \beta_3 Age + u$
= $(\beta_0 - 6\beta_1) + (\beta_1 + \beta_3) Age + (\beta_2 - \beta_1) Educ + u$
= $\alpha_1 + \alpha_2 Age + \alpha_3 Educ + u$

Possible to estimate α_i , but impossible to find unique solutions for β_i

Perfect Multicollinearity

forward together sonke siya phambil saam vorentoe

. reg lwage educ exp ag

note: educ omitted because of collinearity

Source	SS	df	MS		er of obs 23433)	=	23,436
Model Residual	8688.92651 20724.5658	2 23,433	4344.46325	5 Prob	> F	=	0.0000
Total	29413.4923	23,435	1.25510955	2	R-squared MSE	=	0.2953
lwage1	Coef.	Std. Err.	t	P> t	[95% Cor	f.	Interval
educ	0	(omitted)					
exp	1578357	.0016206	-97.40	0.000	1610121		1546593
age	.1841194	.0018693	98.49	0.000	.1804553		.1877834
_cons	-1.428745	.0377775	-37.82	0.000	-1.502791		-1.354699

In technical terms, this is the same as saying that (X'X) cannot be inverted.

- X not of full column rank
- Cannot calculate $\hat{\beta} = (X'X)^{-1}X'y$ unless we drop a variable
- STATA simply drops a variable of its choice to "make it work": no need to test for perfect multicollinearity

Dieter von Fintel

Intro Metrics: Chap. 2 & 3

forward together sonke siya phambili saam vorentoe

- ▶ Are *exper* and *exper*² perfectly multicollinear?
 - No!
 - Multicolinearity implies perfect linear relationships
 - These variables are perfectly non-linearly correlated
- This has nothing to do with the error term

OLS assumptions

forward together sonke siya phambil saam vorentoe

SLR4/MLR4 – Zero Conditional Mean ("the column problem")

- $E(u|\mathbf{x}) = 0$
- Implies independence of *u* and *x*, as before

Does OLS have causal interpretation?

Is OLS unbiased/causal? ($E(\widehat{\beta}_j | x_1, x_2, \cdots, x_k) = \beta_j$ for all $j = 1, \cdots, k$)

Yes! IF ALL THE ASSUMPTIONS HOLD!

- SLR1: if your PRF is linear, OLS is a good way of estimating it \rightarrow if PRF is non-linear one obviously cannot fit straight lines through data
 - Could introduce non-linear variables
 - Or would have to move to non-linear estimators, which do not fit straight lines
- SLR2: random sampling solves the "row problem"
- SLR3: you cannot estimate OLS without variation
- SLR4: zero conditional mean solves the "column problem"
- The estimator is unbiased
 - Specific estimates may not exactly reflect the population, if we use a sample that produces $\hat{\beta}_1$ that is in the tail of the population distribution of *all possible estimates*
 - But the average of ALL possible estimates using a representative sample will be the true population value under the assumptions

Distribution: $\hat{\beta}$ 100 SRFs same population $\mathbb{W}^{\text{Stellenbosch}}$

Show that MLR4 gives unbiased/causal estimates of the population m eta

Substitute PRF into OLS estimator

Take conditional expectations

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$$

$$= (X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{u})$$

$$= (X'X)^{-1}X'X\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u}$$

$$= \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u}$$

$$\Rightarrow E(\widehat{\boldsymbol{\beta}}|X) = \boldsymbol{\beta} + (X'X)^{-1}X'E(\boldsymbol{u}|X)$$

$$= \boldsymbol{\beta} \text{ if and only if } E(\boldsymbol{u}|X) = \boldsymbol{0}$$

Omitted Variable Bias: a simple case

forward together sonke siya phambili saam vorentoe

 $PRF: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$ $SRF: y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{u}$

- ▶ Population model includes x_2 ($\beta_2 \neq 0$), but when omitted (perhaps because there is no data), SRF restricted to $\hat{\beta}_2 = 0$ in sample
- Violation of MLR4 biased estimate of β₁ how large is the bias?
 - Use what we know about relationship between simple and multiple regression

 $\widehat{\beta}_1 = \beta_1 + \beta_2 \delta$

where δ is the regression coefficient of x_2 on x_1 Estimate ="Truth" + bias

$$\widehat{\beta}_1 = \beta_1 + \beta_2 \delta$$

• UPWARD BIAS: $\beta_2 \delta > 0$

 $\begin{array}{c} \beta_2 > 0; \delta > 0 \\ \beta_2 < 0; \delta < 0 \end{array} \right\} \quad \beta_1 > 0 : \widehat{\beta}_1 \text{"too positive"} \quad \beta_1 < 0 : \widehat{\beta}_1 \text{"not as negative"} \end{array}$

DOWNWARD BIAS: $\beta_2 \delta < 0$

 $\begin{array}{l} \beta_2 > 0; \delta < 0 \\ \beta_2 < 0; \delta > 0 \end{array} \right\} \quad \beta_1 > 0 : \widehat{\beta}_1 \text{"not as positive"} \quad \beta_1 < 0 : \widehat{\beta}_1 \text{"too negative"} \end{array}$

TABLE 3.2

Summary of Bias in $\tilde{\beta}_1$, when x, Is Omitted in Estimating Equation (3.40)

	$\operatorname{Corr}(x_1, x_2) > 0$	$\operatorname{Corr}(x_1, x_2) < 0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

forward together sonke siya phambil saam vorentoe

 $\begin{aligned} & \mathsf{PRF} : \mathsf{log}(\mathsf{wage}) = \beta_0 + \beta_1 \mathsf{education} + \beta_2 \mathsf{ability} + u \\ & \mathsf{SRF} : \mathsf{log}(\mathsf{wage}) = \widehat{\beta}_0 + \widehat{\beta}_1 \mathsf{education} + \widehat{u} \end{aligned}$

A classical example from the literature

- "Ability bias" in estimating $\beta_1 > 0$
- What direction is the bias likely to take?
 - How are education and "ability" **likely** to be correlated? ($\delta > 0$)
 - How are wages and "ability" **likely** to be correlated? ($\beta_2 > 0$)
 - NOTE: this is a theoretical argument, because we do not observe "ability" and we argue about unobserved population relationships
 - $\beta_1 > 0$ and $\beta_2 \delta > 0 \Rightarrow$ effect of educ "too positive" if "ability" omitted

forward together sonke siya phambili saam vorentoe

 $\begin{aligned} & \textit{PRF}: \textit{crime} = \beta_{0} + \beta_{1}\textit{expenditure} + \beta_{2}\textit{past crime} + u \\ & \textit{SRF}: \textit{crime} = \widehat{\beta}_{0} + \widehat{\beta}_{1}\textit{expenditure} + \widehat{u} \end{aligned}$

Does expenditure on policing reduce crime?

- What direction is the bias likely to take?
 - How are expenditure and past crime **likely** to be correlated? ($\delta > 0$)
 - How are current crime and past crime **likely** to be correlated? ($\beta_2 > 0$)

 $\beta_2\delta>0$ and $\beta_1<0\Rightarrow$ effect of expenditure is "not as negative" if we omit "past crime"

forward together sonke siya phambili saam vorentoe

 $PRF: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$ $SRF: y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{u}$

- Omitting variables results in bias ("missing column"); does adding too many variables have similar effect?
 - Short answer: no effect on bias; but risk of increasing standard errors
- > x_3 is not part of PRF (ie $\beta_3 = 0$ in population)
 - $\widehat{\beta}_3$ will average to zero across all random samples
 - But it is possible that we draw a sample where it is large and significant
 - Overspecification is not serious for bias of $\widehat{\beta}_1$ and $\widehat{\beta}_2$
 - Variance: will discuss later

Variance of OLS estimators

forward together sonke siya phambili saam vorentoe

- Want to know "how far" estimates are from population value on average
 - Variance of the estimator
 - Standard error of the estimator
 - Remember the estimator is also a random variable
 - BUT we don't observe the variation
 - In real life: only observe one estimate from one sample
 - Can be calculated under assumptions MLR1-MLR4, but need to add another assumption to simplify the calculation

forward together sonke siya phambili saam vorentoe

Add assumption **SLR5/MLR5**: Homoskedasticity

- *u* has same variance given **any** values of **all** explanatory variables
 - But also constant variance of y across different values of x

 $Var(u|\mathbf{x}) = Var(y|\mathbf{x}) = \sigma^2$

- Allows us to calculate standard errors for $\hat{\beta}$ simply **and efficiently**, **even if we do not observe the distribution** of $\hat{\beta}$
- The assumption is NOT the same as E(u|X) = 0
- MLR5 can easily be violated
 - Eg at high education you have wider interests and greater variation in wages
 - Low levels generally constant (low) wages

Homoskedastic errors

forward together sonke siya phambili saam vorentoe

Copyright © 2009 South-Western/Cengage Learning

Heteroskedastic errors

forward together sonke siya phambil saam vorentoe

Dieter von Finte

Intro Metrics: Chap. 2 & 3

14-02-2024 60 / 7

Theorem E.2

Stellenbosch

forward together sonke siya phamk saam vorentoe

Homoskedasticity in matrix form.

 Diagonals: same variance for each observation; off-diags: no autocorrelation

$$Var(\boldsymbol{u}|X) = \begin{bmatrix} \sigma^2 & 0 & \cdots & \cdots & 0 \\ 0 & \sigma^2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \sigma^2 \end{bmatrix} = l_n \sigma^2$$

Then: $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u}$
 $Var(\hat{\boldsymbol{\beta}}|X) = Var(\boldsymbol{\beta} + (X'X)^{-1}X'X|\boldsymbol{u})$
 $= Var((X'X)^{-1}X'\boldsymbol{u}|X)$ because $\boldsymbol{\beta}$ is not random
 $= (X'X)^{-1}X'Var(\boldsymbol{u}|X)X(X'X)^{-1}$
 $= (X'X)^{-1}X'l_n\sigma^2X(X'X)^{-1}$
 $= \sigma^2(X'X)^{-1}X'X(X'X)^{-1}$
 $= \sigma^2(X'X)^{-1}$

- We do not know σ^2 because it is the variance of **population** errors *u*, which we do not observe
- However, an unbiased estimator for σ^2 comes from *sample* residuals $SSR = \sum_{i=1}^{n} \hat{u}_i^2$

$$\widehat{\sigma}^2 = s^2 = \frac{SSR}{n - (k+1)}$$

- Standard error of regression (square root of estimated variance)
- Also estimates the standard error of *y* once effect of *x* is removed

Standard Deviation vs Standard Error

forward together sonke siya phambiti saam vorentoe

- Standard deviation: if we knew σ^2 estimated from u
- Standard error is an estimate of the standard deviation ($\hat{\sigma}^2$ estimated from residuals \hat{u})
 - Because we do not have population errors
 - It is therefore in itself a random variable, because it differs by sample

Gauss-Markov Assumptions

forward together sonke siya phambili saam vorentoe

- MLR1-MLR5 are the Gauss-Markov assumptions for cross section data with random sampling
 - Change slightly for time series data
- All G-M assumptions are required to get OLS standard errors
 - **MLR1-MLR4**: to establish whether $\hat{\beta}_j$ is biased or not
 - MLR1-4 plus MLR5 is required for variance calculations

Under MLR5:

$$Var\left(\widehat{\beta}|X\right) = \sigma^2 \left(X'X\right)^{-1}$$
 with diagonal elements $Var(\widehat{\beta}_j) = \frac{\sigma^2}{SST_{x_i}(1-R_i^2)}$

where $SST_{x_j} = \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2$ is the variation in x_j and R_j^2 is the fit of the regression of x_j on all other covariates Summarised in $(X'X)^{-1}$ Under MLR5:

$$Var\left(\widehat{\beta}|X\right) = \sigma^2 \left(X'X\right)^{-1}$$
 with diagonal elements $Var(\widehat{\beta}_j) = \frac{\sigma^2}{SST_{x_j}\left(1-R_j^2\right)}$

3 changes determine whether OLS estimates are more/less efficient when adding/dropping a variable

•
$$\uparrow \sigma^2 = \frac{SSR}{n-k-1} \Rightarrow \uparrow Var\left(\widehat{\beta}|X\right)$$

• Cannot reduce SSR by $\uparrow n$, but can do so by $\uparrow k$ (number of variables)

$$\blacktriangleright \uparrow SST_{x_j} \Rightarrow \downarrow Var\left(\widehat{\boldsymbol{\beta}}|X\right)$$

- Non-experimental analysis: cannot "introduce" variation in x_j, unless ↑ n
- ▶ IMPERFECT multicollinearity $\uparrow R_j^2 \Rightarrow \downarrow (1 R_j^2) \Rightarrow \uparrow Var\left(\widehat{\beta}|X\right)$
 - $(X'X)^{-1}$ captures both the variation within each x_j (which is SST_j) and the variation between the explanatory variables (R_i^2)

ellenhosc

OLS Variance: Imperfect Multicollinearity

forward together sonke siya phambili saam vorentoe

- The strength of the linear relationship among the independent variables (R_i^2)
 - R_j^2 is the R^2 of $x_j = \widehat{\alpha}_0 + \widehat{\alpha}_1 x_1 + \dots + \widehat{\alpha}_{j-1} x_{j-1} + \widehat{\alpha}_{j+1} x_{j+1} + \dots + \widehat{\alpha}_k x_k + \widehat{u}$
 - If $R_j^2 o 1$ (=**perfect** multicollinearity), $Var(\widehat{\beta}_j) \to \infty$
 - Same as not being able to estimate the coefficient at all (MLR3 fails)
 - When R_j^2 moves close to 1 (but $R_j^2 \neq 1$), large $Var(\hat{\beta}_j)$, but does not violate the perfect multicollinearity assumption
 - Strong interrelationships between *x*'s make it difficult to distinguish which of the variables is "doing the work" in explaining *y*
 - The uncertainty is reflected in higher standard errors

Multicollinearity and variances of estimates

forward together sonke siya phambil saam vorentoe

Dieter von Fintel

14-02-2024 67 / 77

forward together sonke siya phambili saam vorentoe

- Drop variables?
 - But omitted variable bias is the trade-off!
- Collect more data?
 - Higher *n* increases variation in *x*, and can reduce correlation between *x*'s
- Detection:
 - $VIF = \frac{1}{1-R_i^2} > 10$ is "too high" rule of thumb, but an "arbitrary threshold"
- If one variable is not highly correlated with other controls
 - It's variance remains unaffected (low R_j^2)

forward together sonke siya phambili saam vorentoe

Trade-off between bias and variance

- If population model contains many collinear variables:
 - Include all variables to avoid omitted variable bias
 - Cannot solve this by increasing n
 - But at the cost of high variance
 - **Can** solve this by increasing $n (\uparrow SST_{x_i}; \downarrow \sigma^2)$
- Ideally: have a large sample size to mitigate against collinearity and specify all variables in the PRF in the sample model

Use the famous auto.dta dataset on car prices in STATA Suppose for some reason the following PRF is important for a research question:

```
ln(price) = \beta_0 + \beta_1 length + \beta_2 weight + \beta_3 foreign + u
```

```
. correl ln_price length_m weight_k foreign
(obs=74)
```

	ln_price	length~s	weight~g	foreign
ln_price	1.0000			
length met~s	0.4589	1.0000		
weight_kg	0.5405	0.9460	1.0000	
foreign	0.0870	-0.5702	-0.5928	1.0000

- Length and weight are strongly correlated with each other, and also with price
- Foreign is weakly correlated with price, but strongly negatively related to length and weight

forward together sonke siya phambi saam vorentoe

Example

Simple regressions

. reg ln_price length_m

Source	SS	df	MS	Number of obs		74
Model Residual	2.3640604 8.85947268	1 72	2.3640604		Ξ	19.21 0.0000 0.2106
Total	11.2235331	73	.153747029	Adj R-squared Root MSE	-	0.1997 .35078
ln_price	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]
length_metres _cons	2.020501 7.121762	.4609645 .3489118	4.38 20.41	0.000 1.101 0.000 6.426		2.939417 7.817305

. reg ln_price weight_kg

	Source	SS	df	MS	Number of obs	=	74
					F(1, 72)	=	29.71
	Model	3.27831499	1	3.27831499	Prob > F	=	0.0000
	Residual	7.94521809	72	.110350251	R-squared	=	0.2921
_					Adj R-squared	=	0.2823
	Total	11.2235331	73	.153747029	Root MSE	-	.33219

ln_price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight_kg _cons	.0005453 7.817322	.0001001 .1559096	5.45 50.14	0.000	.0003459 7.506521	.0007448 8.128122

. reg ln_price foreign

Source	55	df	MS	Number of obs	
				- F(1, 72)	= 0.55
Model	.085003065	1	.08500306		= 0.4609
Residual	11.13853	72	.15470180	6 R-squared	= 0.0076
				 Adj R-squared 	= -0.0062
Total	11.2235331	73	.15374702	9 Root MSE	= .39332
ln_price	Coef.	Std. Err.	t	P> t [95% C	onf. Interval]
foreign	.0741515	.1000347	0.74	0.46112526	39 . 273567
cons	8.618587	.0545439	158.01	0.000 8.5098	56 8.727319

forward together sonke siya phambil saam vorentoe

	(1) ln_price	(2) ln_price	(3) ln_price	(4) ln_price	(5) ln_price	(6) ln_price
length_met~s	2.02050*** (0.46096)				3.31760*** (0.49639)	-1.94830 (1.06693)
weight_kg		0.00055*** (0.00010)		0.00092*** (0.00010)		0.00124***
foreign			0.07415 (0.10003)	0.53527*** (0.08441)	0.44027*** (0.09607)	0.52982***
_cons	7.12176*** (0.34891)	7.81732*** (0.15591)	8.61859*** (0.05454)	7.09086*** (0.16989)	6.01581*** (0.39181)	7.92509*** (0.48647)
r2	0.21063	0.29209	0.00757	0.54804	0.39082	0.56859
N	74 8.85947	74 7.94522	74	74 5.07258	74 6.83712	74 4.84193

Standard errors in parentheses

* p<0.05, ** p<0.01, *** p<0.001

- (1), (2) and (3) confirm correlations, but notably $se(\hat{\beta}_{foreign}) > \hat{\beta}_{foreign}$ (noise > signal)
- ▶ (1) and (5): $SSR \downarrow$, SST_{length} and $SST_{foreign}$ unchanged
 - but $se(\hat{\beta}_{length})$ \uparrow because of strong collinearity with foreign
 - and $se(\hat{\beta}_{foreign}) \downarrow$ so that effect of SSR dominates collinearity with length

forward together sonke siya phambil saam vorentoe

	(1) ln_price	(2) ln_price	(3) ln_price	(4) ln_price	(5) ln_price	(6) ln_price
length_met~s	2.02050*** (0.46096)				3.31760*** (0.49639)	-1.94830 (1.06693)
weight_kg		0.00055*** (0.00010)		0.00092*** (0.00010)		0.00134***
foreign			0.07415 (0.10003)	0.53527*** (0.08441)	0.44027*** (0.09607)	0.52982***
_cons	7.12176*** (0.34891)	7.81732*** (0.15591)	8.61859*** (0.05454)	7.09086*** (0.16989)	6.01581*** (0.39181)	7.92509*** (0.48647)
r2	0.21063	0.29209	0.00757	0.54804	0.39082	0.56859
N SSI	74 8.85947	74 7.94522	74 11.13853	74 5.07258	74 6.83712	74 4.84193

Standard errors in parentheses

* p<0.05, ** p<0.01, *** p<0.001

- (2) and (4): $SSR \downarrow$, SST_{weight} and $SST_{foreign}$ unchanged
 - similar to before
- ► (2) and (4): $\beta_{foreign} > 0$, $\delta_{foreign;weight} < 0$, so that simpler regression was downward biased
 - Controlling for foreign $\uparrow \widehat{\beta}_{weight}$

forward together sonke siya phambil saam vorentoe

	(1) ln_price	(2) ln_price	(3) ln_price	(4) ln_price	(5) ln_price	(6) ln_price
length_met~s	2.02050*** (0.46096)				3.31760*** (0.49639)	-1.94830 (1.06693)
weight_kg		0.00055*** (0.00010)		0.00092*** (0.00010)		0.00134*** (0.00025)
foreign			0.07415 (0.10003)	0.53527*** (0.08441)	0.44027*** (0.09607)	0.52982*** (0.08311)
_cons	7.12176*** (0.34891)	7.81732*** (0.15591)	8.61859*** (0.05454)	7.09086*** (0.16989)	6.01581*** (0.39181)	7.92509*** (0.48647)
x2	0.21063	0.29209	0.00757	0.54804	0.39082	0.56859
N 551	74 8.85947	74 7.94522	74 11.13853	74 5.07258	74 6.83712	74 4.84193

```
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
```

- (5) and (6): SSR ↓; SST_{length}, SST_{weight} and SST_{foreign} unchanged
 - But the very high collinearity between weight and length make the latter standard error grow very large
- ► (5) and (6): $\beta_{length} > 0$, $\delta_{foreign; length} > 0$, so that simpler regression was perhaps upward biased
 - Controlling for foreign $\downarrow \widehat{\beta}_{weight}$: it a large negative value
 - But does it make sense? (It is not statistically significant next chapter)

Dieter von Fintel

Intro Metrics: Chap. 2 & 3

VIFs

forward together sonke siya phambil saam vorentoe

. estat vif		
Variable	VIF	1/VIF
weight_kg length_met~s foreign	9.92 9.53 1.54	0.100839 0.104932 0.647716
Mean VIF	7.00	

- In the final regression we detect high levels of multicollinearity
- What if weight and length matter in the PRF, but we cannot distinguish their effects in a small sample of n = 74 with high collinearity?

forward together sonke siya phambit saam vorentoe

What would happen if we added a variable that was not correlated to any other *x*'s?

To coefficients?

To standard errors?

Gauss-Markov Theorem

forward together sonke siya phambil saam vorentoe

- Why use OLS? it is unbiased under MLR1-4
 - But there are other unbiased linear estimators for $oldsymbol{eta}$
- OLS is BLUE Best Linear Unbiased Estimator
 - "Best" it has the smallest variance (most efficient) if we assume MLR5
- Gauss-Markov Theorem
 - Among all linear unbiased estimators, the OLS estimator has smallest variance given that MLR1-MLR5 hold
- Homoskedasticity got us "best"
 - Heteroskedasticity doesn't affect bias of coefficients, but biases the standard errors that we calculated because we do not observe all samples
 - We no longer have the "best" estimator if MLR 5 fails