The simple and multiple regression model

Chapters 2 \& 3: Introductory Econometrics 771

Prof Dieter von Fintel

Department of Economics Stellenbosch University

14 February 2024

Overview

Conditional expectation \rightarrow linear regression

When does regression have causal or ceteris paribus interpretation?

- Population vs Sample Regression Functions

The Ordinary Least Squares Estimator

- Derivation

Mechanics and interpretation of OLS with multiple regressorsProperties of OLS estimators
O Goodness of fit

- Partialling out interpretation

Expected values and variances of OLS

- Assumptions to ensure that OLS is unbiased/causal

O Including too many variables

- Sample variation in OLS estimates
- Imperfect multicollinearity

Variances in misspecified models
O Gauss-Markov Theorem

Conditional expectation function

- Different distributions of
$Y=$ wage at $x=$ educ $=1 \cdots 20$
\rightarrow distributions around CEF
- Deterministic vs statistical
- How to estimate the slope of the CEF?

$$
\widehat{\beta}_{1}=\frac{\partial E(Y \mid X)}{\partial x}
$$

...it quantifies the relationship between
$Y=$ wage and $X=$ educ

Definition of the regression model

"Explain $y=$ wage in terms of $x=$ educ"

- Functional form: "Linear Regression"

$$
y=\beta_{0}+\beta_{1} x_{\text {main }}+u
$$

- $\beta_{0}: y$ - intercept - "mean wage of individuals with O education"
- CONDITIONAL mean
- $\beta_{1}=\frac{\Delta \text { wage }}{\Delta e d u c}:$ slope of a straight line $-\Delta$ wage for one year $\Delta e d u c$
- u are unobservables - social networks, soft skills, ability, motivation, etc
- Ceteris paribus???
- Linearity?
- In parameters, not in variables (more later)
- A marginal change in x (say, education) has the same impact on y (say, wage), regardless of the level of x
- Realistic? We will see how to deal with this later

When is β_{1} a ceteris paribus effect?

 UNIVERSITEIT- Hold other observables $\left(x_{\text {other }}\right)$ \& unobservables (ε) constant as $x_{\text {main }}$ changes
- Think of $u=\beta_{\text {other }} X_{\text {other }}+\varepsilon \Rightarrow y=\beta_{0}+\beta_{1} x_{\text {main }}+\beta_{\text {other }} X_{\text {other }}+\varepsilon$
- Split u into "information" and "randomness" that is uncorrelated with $x_{\text {main }}$
- If $x_{\text {other }}$ is part of u (OR: $x_{\text {other }}$ also determines y) AND correlates with $x_{\text {main }}$. cannot "hold it constant" unless somehow "taken out of u "
- POPULATION REGRESSION FUNCTION: β_{1} is "true" (not necessarily known) relationship if... all relevant x 's included ($x_{\text {main }}$); or only "randomness" (ε) is left in u, so that $\operatorname{Cov}\left(u ; x_{\text {main }}\right)=\operatorname{Cov}\left(\varepsilon ; x_{\text {main }}\right)=0$

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{\text {main }}+u \\
\Delta y & =\beta_{1} \Delta x_{\text {main }}+\Delta u
\end{aligned}
$$

$$
\frac{\Delta y}{\Delta x_{\text {main }}}=\frac{\Delta \beta_{0}}{\Delta x_{\text {main }}}+\beta_{1} \frac{\Delta x_{\text {main }}}{\Delta x_{\text {main }}}+\frac{\Delta u}{\Delta x_{\text {main }}}
$$

$$
\frac{\Delta y}{\Delta x_{\text {main }}}=0+\beta_{1}+\frac{\Delta u}{\Delta x_{\text {main }}} \Rightarrow \beta_{1}=\frac{\Delta y}{\Delta x_{\text {main }}}-\frac{\Delta u}{\Delta x_{\text {main }}}
$$

$$
\beta_{1}=\frac{\Delta y}{\Delta x} \text { only if } \frac{\Delta u}{\Delta x}=0 \text { or } \frac{\Delta x_{\text {other }}}{\Delta x_{\text {main }}}=\frac{\Delta \varepsilon}{\Delta x_{\text {main }}}=0
$$

State this more formally

UNIVERSITY
IYUNIVESITHI
IYUNIVESITHI
UNIVERSITEIT

- If there is an intercept, it can be shown that $E(u)=0$... always
- Now what must we assume to obtain "ceteris paribus" estimates?
- No correlation between x and u
- Generalise this to non-linear relationships with conditional expectations: $E(u \mid x)=E(u)$
- Mean (non-linear and linear) INDEPENDENCE
- Average of unobservables is the same, regardless of values of x
- Concretely: for regression to have ceteris paribus or causal interpretation, average motivation/ability/access to education (absorbed in u because it is not measured/unobserved) must be the same for people with low and high levels of education ($x_{\text {main }}$) \rightarrow likely not a good assumption \rightarrow estimate of β_{1} does not necessarily have causal interpretation
- How could unobservables influence our estimate relative to the true ("unbiased"/causal/population) value?
- Often simplified as: $E(u \mid x)=0$ because $E(u)=0$
- Zero conditional mean assumption

POPULATION regression function

y, x and u are random variables

- They have a population distribution
- A "real" set of values that is partially reflected in our sample
- $E(y \mid x)$: how the average value of y changes with x in the population
- In the population, the β are not random
- They have no distribution, because one true (unbiased/causal/ceteris paribus) population value for them
- "DATA GENERATING PROCESS": the conditional expectation function is the systematic/deterministic part of PRF, separated from the random component

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x+u \\
E(y \mid x)=E\left(\beta_{0}+\beta_{1} x+u \mid x\right) \\
=E\left(\beta_{0} \mid x\right)+E\left(\beta_{1} x \mid x\right)+E(u \mid x) \\
=\beta_{0}+\beta_{1} x+0
\end{gathered}
$$

because if the PRF is fully specified, there is no remaining relationship between u and x

Model with 2 independent variables

Suppose the Population Regression Function includes experience according to theory

$$
\text { wage }=\beta_{0}+\beta_{1} \text { education }+\beta_{2} \text { experience }+u
$$

- Taking experience out of the error term, and assume this theory is "enough" to characterise the DGP (ie u is now random and unrelated to all the x 's)
- β_{1} is ceteris paribus effect of education on wage holding experience and u fixed
- β_{2} is ceteris paribus effect of experience on wage holding education and u fixed
- But now we have a better estimate of it; it is a causal estimate IF we have fully specified the PRF, meaning that $E(u \mid$ educ; exper $)=0$
- Had we left experience out

$$
\text { wage }=\tilde{\beta}_{0}+\tilde{\beta}_{1} \text { education }+\tilde{u} \text { where } \tilde{u} \text { contains experience }
$$

- If education and experience are correlated, $E($ educ $\mid \tilde{u}) \neq 0$ so that $\tilde{\beta}_{1} \neq \beta_{1}$

Model with k independent variables

If PRF must contain more variables (k of them)

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \cdots+\beta_{k} x_{k}+u
$$

The zero conditional mean assumption extends to:

$$
E\left(u \mid x_{1}, x_{2}, \cdots, x_{k}\right)=E(u \mid \boldsymbol{x})=0
$$

- Average of unobservables is zero regardless of each value of each x_{j}, for example
- Average motivation (contained in u) must be zero at educ $=0$ and educ $=1$ and... educ $=20$
- AND average motivation must be zero at exp $=0$ and $\exp =1$ and... exp $=40$
- AND similar for all other variables in the PRF
- Or simply: independence of all the variables and the unobservable population error

Sample Regression Function (SRF)

- Hardly ever have data on the whole population
- Two main data reasons for biased estimation (among others)
- Not all variables collected (as before): a "column problem"
© Do not sample whole population: a "row problem"
- Draw representative SAMPLE from population
- Draw inferences about population based on sample
- Different sub-samples of data from the same population, estimate of the PRF (= SRF) is different in each case
- Estimate because know true PRF without full information
- $\widehat{\beta}$ is therefore also stochastic - a random variable $\Rightarrow \widehat{\beta}$ has a distribution
- (remember the distributions around the slope of the CEF?) (NOTE: the "hat" emphasises that this is an estimate from a sample)

Full information

- Imagine for a moment that educ and age tell us everything about why people get paid what they do...
- Code simulates a fake "population" level dataset that reflects the following PRF:

$$
\text { wage }=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+u
$$

where $\beta_{0}=10, \beta_{1}=0.5, \beta_{2}=0.1$

```
STATA CODE
    clear
set seed 1234
set obs 60000000
gen educ = int(rnormal()*1.4 + 12)
gen age = int(rnormal()*4+40)
gen exper = max(age - educ - 6-int(rnormal ()*0.1),0)
gen u = 0.1*rnormal()
gen wage = 10 + 0.5*educ +0.1*exper +u
drop age
```


Full information

UNIVERSITY
IYUNIVESITHI
foward tongether
sonke sya phambil
IYUNIVESITHI
UNIVERSITEIT

- Population of $N=60$ million
- "True" population regression function is

$$
\text { wage }=\beta_{0}+\beta_{1} \text { education }+\beta_{2} \text { exper }+u
$$

- With full information could estimate β_{1} from the PRF without a problem using Ordinary Least Squares (OLS) - more later

Don't observe randomness

- Population of $N=60$ million
- Estimate Sample Regression Function $\widehat{\text { wage }}=\widehat{\beta}_{0}+\widehat{\beta}_{1}$ education $+\widehat{\beta}_{2}$ exper
- Only omitting random information (u) gives $\widehat{\beta}_{1}$ close to population β_{1}

+Don't observe exper (part of PRF)

- Population of $N=60$ million
- Estimate Sample Regression Function

$$
\widehat{\text { wage }}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \text { education }
$$

- Omitting non-random information (exper) gives $\widehat{\beta}_{1}$ not close to true β_{1}

Observation	wage	educ	exper	random u
1	18.63818	11	31	0.0381753
2	17.58195	9	30	0.0819504
3	17.20783	11	17	0.0078265
4	18.22533	11	28	0.0746732
5	18.55296	12	26	-0.0470415
6	17.37125	11	19	-0.0287531
7	17.56123	13	11	-0.038775
8	17.26208	11	19	-0.1379214
9	17.77695	11	23	0.02305
10	17.60788	8	35	0.1078842
$:$	$:$	\vdots	\div	\div
100	18.40646	13	19	0.0064596
$:$	\vdots	\vdots	\div	\div
\vdots	\vdots	\vdots	\div	\div
1000	18.24569	12	23	-0.054311
$:$	$:$	\vdots	\div	\div
100000	18.15609	11	28	-0.1439148
$:$	$:$	\vdots	\div	\div
10000000	17.86163	13	15	-0.1383734
$:$	$:$	\vdots	\div	\div
60000000	19.64043	15	22	-0.0595725

. reg wage educ

Source	SS	df	MS	Number of obs	$=60000000$
				F (1, 59999998)	> 99999.00
Model	19617090.2	1	19617090.2	Prob > F	0.0000
Residual	10253337.4	59999998	. 170888962	R-squared	0.6567
				Adj R-squared	0.6567
Total	29870427.6	59999999	. 497840468	Root MSE	. 41339

wage	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
educ	.4000193	.0000373	$1.1 \mathrm{e}+04$	0.000	.3999461	.4000925
_cons	13.34987	.0004327	$3.1 \mathrm{e}+04$	0.000	13.34902	13.35072

- correl
(obs $=60,000,000$)

	educ	exper	u	wage
educ	1.0000			
exper	-0.3357	1.0000		
u	0.0001	0.0000	1.0000	
wage	0.8104	0.2635	0.1418	1.0000

+take one sample of $n=1000$

- Sample of first $n=1000$ from population of $N=60$ million
- Estimate Sample Regression Function

$$
\widehat{\text { wage }}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \text { education }
$$

- Omitting the $>$ 59million observations gives different $\widehat{\beta}_{1}$ to before

+ take $2^{\text {nd }}$ sample of $n=1000$

fowerd tranether
sonke sye phambill

- Sample of last $n=1000$ from population of $N=60$ million
- Estimate Sample Regression Function

$$
\widehat{\text { wage }}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \text { education }
$$

- Omitting the >59 million observations gives a different $\widehat{\beta}_{1}$ to before (but with good sample design, it may not be that far away)

+take $3^{\text {rd }}$ random sample of $n=1000$

- Random sample of $n=1000$ from population of $N=60$ million
- Estimate Sample Regression Function

$$
\widehat{\text { wage }}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \text { education }
$$

- Omitting the >59 million observations gives a different $\widehat{\beta}_{1}$ to before (but with good sample design, it may not be that far away)
. sample 1000, count
(59,999, 000 observations deleted)
. reg wage educ

Source	SS	df	MS	Number of obs	=	1,000
				$\mathrm{F}(1,998)$	=	1789.27
Model	325.887479	1	325.887479	Prob > F	=	0.0000
Residual	181.769655	998	. 182133923	R -squared	=	0.6419
				Adj R-squared	=	0.6416
Total	507.657135	999	. 5081653	Root MSE	=	. 42677

| wage | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| educ | .4107828 | .0097112 | 42.30 | 0.000 | .391726 | .4298395 |
| _cons | 13.22154 | .1127518 | 117.26 | 0.000 | 13.00028 | 13.4428 |

Sample Regression Functions

In summary

- We usually have column problems (omitted variables) that give us $\widehat{\beta} \neq \beta$
- We usually observe one set of rows that deviates from the population
- Omitting rows can add to the column problem if the sample is non-randomly collected
- Omitting rows is less problematic with random sampling
- If we were to observe a different set of rows in our sample, we would get a different $\widehat{\beta}$ (even ignoring the column problems)
- Our sample regression function therefore has stochastic estimates of $\widehat{\beta}$ with a distribution

SRF - an illustration using census

- "Population" - note: we are ignoring column problems for now
. reg l_inc educ

Source	SS	df	MS
Model	1034722.29	1	1034722.29
Residual	2097529.44	1,540,891	1.36124453
Total	3132251.73	1,540,892	2.03275228

Number of obs	$=1,540,893$	
F(1, 1540891)	$>$	99999.00
Prob $>$ F	$=0.0000$	
R-squared	$=0.3303$	
Adj R-squared	$=0.3303$	
Root MSE	$=1.1667$	

| l_inc | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| education | .2096349 | .0002404 | 871.85 | 0.000 | .2091636 | .2101062 |
| _cons | 7.782751 | .0020603 | 3777.40 | 0.000 | 7.778713 | 7.786789 |

2x Random samples: 0.05\% observations

| l_inc | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | :---: | ---: |
| education | .195089 | .0108248 | 18.02 | 0.000 | .1738394 | .2163387 |
| _cons | 7.923942 | .0921992 | 85.94 | 0.000 | 7.742949 | 8.104934 |

Source	SS	MS		Number of obs $=770$			
				$\mathrm{F}(1,768)$			472.93
Model	584.256764	1	584.256764	Prob > F			0.0000
Residual	948.791361	768	1.23540542	R -squared			
				Adj R-squared			0.3803
Total	1533.04812	769	1.99356063	Root MSE			1.1115
1_inc	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]		
education	. 2185987	. 010052	21.75	0.000	. 1988661		. 2383313
_cons	7.710336	. 0878119	87.81	0.000	7.537956		7.882716

"Distribution" of $\widehat{\beta}_{1}$ from 100 different SRFsgrselmese

- Sample 0.5\% from population (larger sample size n)
- Sample 0.05\% from population (smaller sample size n)
- distribution is wider in smaller samples
- In Chapter 4: use distribution to assess the validity of our estimates

Variable	Obs	Mean	Std. Dev.	Min	Max
b_50	100	.2091172	.002918	.200028	.2170477
b_5	100	.2082802	.0088448	.1844666	.2316327

Deriving OLS Estimates

- We do not know population parameters or the distribution
- Need to find an mathematical estimators to approximate these from a sample
- Ordinary Least Squares Estimator
- Carl Friedrich Gauss, University of Göttingen
- An official partner to our Economics Department

- Approach is to find the best fitting line that minimises the sum of squared residuals ($\sum_{i=1}^{N} \widehat{u}_{i}^{2}$)

Obtaining OLS estimates

- Take the following SRF

$$
y_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1 i}+\widehat{\beta}_{2} x_{2 i} \cdots+\widehat{\beta}_{k} x_{k i}+\widehat{u}_{i}=\widehat{y}_{i}+\widehat{u}_{i}
$$

SAMP. resid. $=\widehat{u}_{i}=y_{i}-\widehat{y}_{i}$

$$
=y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1 i}+\widehat{\beta}_{2} x_{2 i} \cdots+\widehat{\beta}_{k} x_{k i}\right)
$$

POP. unobs. $=u_{i}=y_{i}-\left(\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i} \cdots+\beta_{k} x_{k i}+\cdots+\beta_{(k+j)} x_{(k+j) i}\right)$

- SAMPLE residual not the same as POPULATION unobservable, unless can control for all $x_{j}: \widehat{u} \neq u$
- Minimise sum of squared residuals using optimisation techniques
- Get the fitted model to be as close to the data as possible

$$
\min \sum_{i=1}^{n} \widehat{u}_{i}^{2}=\min \sum_{i=1}^{n}\left[\widehat{y}_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1 i}+\widehat{\beta}_{2} x_{2 i} \cdots+\widehat{\beta}_{k} x_{k i}\right)\right]^{2}
$$

- Minimisation with multivariate algebra in Appendix E and SunLearn

Derivation of OLS estimates

Express the OLS model in matrix and vector notation:

$$
\boldsymbol{y}=X \widehat{\boldsymbol{\beta}}+\widehat{\boldsymbol{u}}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \boldsymbol{x}_{1}+\cdots+\widehat{\beta}_{k} \boldsymbol{x}_{k}+\widehat{\boldsymbol{u}}
$$

where $\underbrace{\boldsymbol{y}}_{n \times 1}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ is the dependent variable vector $\underbrace{X}_{n \times(k+1)}=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right]$ is the matrix of explanatory variables,
$\underbrace{\widehat{\boldsymbol{\beta}}}_{(k+1) \times 1}=\left[\begin{array}{c}\widehat{\beta}_{0} \\ \widehat{\beta}_{1} \\ \vdots \\ \widehat{\beta}_{k}\end{array}\right]$ is the coefficst col is to estimate the intercept,

Derivation

$$
\begin{aligned}
\Rightarrow \widehat{\boldsymbol{u}} & =\boldsymbol{y}-X \widehat{\boldsymbol{\beta}} \\
\widehat{\boldsymbol{u}}^{\prime} \widehat{\boldsymbol{u}} & =(\boldsymbol{y}-X \widehat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{y}-X \widehat{\boldsymbol{\beta}})=\widehat{u}_{1} \times \widehat{u}_{1}+\widehat{u}_{2} \times \widehat{u}_{2}+\cdots \widehat{u}_{n} \times \widehat{u}_{n}=\sum_{i=1}^{n} \widehat{u}_{i}^{2} \\
& =\underbrace{\boldsymbol{y}^{\prime} \boldsymbol{y}}_{(1 \times n)(n \times 1)}-\underbrace{\widehat{\boldsymbol{\beta}}^{\prime} X^{\prime} \boldsymbol{y}}_{(1 \times k+1)(k+1 \times n)(n \times 1)}-\underbrace{\boldsymbol{y}^{\prime} X \widehat{\boldsymbol{\beta}}}_{(1 \times n)(n \times k+1)(k+1 \times 1)}+\underbrace{\widehat{\boldsymbol{\beta}}^{\prime} X^{\prime} X \widehat{\boldsymbol{\beta}}}_{(1 \times k+1)(k+1 \times n)(n \times k+1)(k+1 \times 1)} \\
& =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \widehat{\boldsymbol{\beta}}^{\prime} X^{\prime} \boldsymbol{y}+\widehat{\boldsymbol{\beta}}^{\prime} X^{\prime} X \widehat{\boldsymbol{\beta}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \widehat{u}^{\prime} \widehat{\boldsymbol{u}}}{\partial \widehat{\boldsymbol{\beta}}^{\prime}} & =-2 X^{\prime} \boldsymbol{y}+2 X^{\prime} X \widehat{\boldsymbol{\beta}}=0 \\
X^{\prime} X \widehat{\boldsymbol{\beta}} & =X^{\prime} \boldsymbol{y} \\
\widehat{\boldsymbol{\beta}} & =\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y}
\end{aligned}
$$

IF ($X^{\prime} X$) is invertible: X has full column rank (no perfect linear relationships)
SIMPLE REGRESSION: $\widehat{\beta}_{1}=\frac{\operatorname{Cov}\left(y ; x_{1}\right)}{\operatorname{Var}\left(x_{1}\right)} \Rightarrow \operatorname{Var}\left(x_{1}\right) \neq 0$
MULTIPLE REGRESSION: typical element of $\widehat{\boldsymbol{\beta}}$ is $\widehat{\beta}_{j}=\frac{\operatorname{Cov}\left(y ; \tilde{x}_{j}\right)}{\operatorname{Var}\left(\tilde{x}_{j}\right)} \Rightarrow \operatorname{Var}\left(x_{j}\right) \neq 0$, where \tilde{x}_{j} is "partialled out" (later)

If $\operatorname{Var}\left(x_{j}\right)=0$

- No estimate if all values of x_{j} are the same (denominator of $\widehat{\beta}_{1}$)

Copyright © 2009 South-Western/Cengage Learning

Fitted Values and Residuals

$$
\begin{gathered}
y_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}+\widehat{u}_{i}=\widehat{y}_{i}+\widehat{u}_{i} \\
\widehat{u}_{i}=y_{i}-\widehat{y}_{i}
\end{gathered}
$$

NOTE: with the hat they are predictions and residuals (not the population error term)

FIGURE 2.4

Fitted values and residuals.

Properties of OLS on Any Sample of Data

- OLS is an estimator (a mathematical rule) that uses a sample to find estimates for $E(y \mid x)$ - not reaching the population estimate exactly
- OLS estimates differ for each sample used: How well does it perform on the specific sample available to researcher?
- $\widehat{\text { salary }}=$ regression line
- $\widehat{u}=$ residuals
- Negative: function overpredicts
- Positive: function underpredicts

TABLE 2.2
Fitted Values and Residuals for the First 15 CEOs

obsno	roe	salary	salaryhat	uhat
1	14.1	1095	1224.058	-129.0581
2	10.9	1001	1164.854	-163.8542
3	23.5	1122	1397.969	-275.9692
4	5.9	578	1072.348	-494.3484
5	13.8	1368	1218.508	149.4923
6	20.0	1145	1333.215	-188.2151
7	16.4	1078	1266.611	-188.6108
8	16.3	1094	1264.761	-170.7606

Properties of OLS

- Algebraic
- Residuals sum to zero or average to zero
- By implication, the average of actual y values equals the average of fitted values

$$
\sum_{i=1}^{n} \widehat{u}_{i}^{2}=\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}^{2}=0
$$

- Sample covariance between residuals and variables is zero
- Does not imply $\operatorname{Cov}(u ; x)=0$ in population
- $\operatorname{Cov}(\widehat{u} ; x)=0$ in sample does not that imply satisfying $E(u \mid x)=0$ in the population
- OLS estimation imposes this assumption on the sample; we get it "wrong" (ie we get bias) if it does not also hold in the population

$$
\operatorname{Cov}\left(\widehat{u} ; x_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i j} \widehat{u}_{i}=\mathrm{O} \text { for } j=1 \cdots k
$$

- $(\overline{\boldsymbol{x}} ; \bar{y})=\left(\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{k}, \bar{y}\right)$ is always on the regression line

Properties of OLS

- Total sum of squares (SST)
- The total variation in y
- Explained sum of squares (SSE)
- The variation in y explained by the model
- Residual sum of squares (SSR)
- The variation in y that is not explained, and contained in residuals

$$
\begin{aligned}
\text { SST } & =S S E+S S R \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} \\
\sigma_{y}^{2} & =\frac{S S T}{n-1}=\text { variance of } y
\end{aligned}
$$

- Small residuals: model fits the specific sample data well
- Small SSR means a "better" sample fit
- Could get a different R^{2} in a different sample
- R^{2} is a measure of sample fit
- Not how well the data fits the population
- Not how well the model fits the population
- Ratio of explained variance to total variance in sample

$$
\begin{aligned}
S S T & =S S E+S S R \\
R^{2} & =\frac{S S E}{S S T}=1-\frac{S S R}{S S T} \text { where } 0 \leq R^{2} \leq 1
\end{aligned}
$$

- Adding more variables: $S S R \downarrow \Rightarrow R^{2} \uparrow$ as soon as you add more (even irrelevant) variables to the model
- Also, the squared correlation coefficient between y and \widehat{y}
- Intuitively, how related is the prediction from the model to the observed data

R^{2} from our SRF experiment

- Small probability of drawing sample with low or high R^{2}

Goodness of fit

- We tend to obtain low R^{2} in cross section analyses
- Does this mean we have a bad equation?
- No, we just have a lot that is unexplained by the factor we have included in the model
- We may still have the correct relationship between x and y if zero-conditional mean assumption holds.
- Be cautious to think a high R^{2} means you have a good model
- More later

"Partialling Out" interpretation of OLS

- Consider 2 variable case

$$
y_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1 i}+\widehat{\beta}_{2} x_{2 i}+\widehat{u}_{i}
$$

- Suppose we have a second regression which removes the overlap between x_{1} and x_{2}

$$
x_{1 i}=\widehat{\alpha}_{0}+\widehat{\alpha}_{1} x_{2 i}+\widehat{r}_{i}
$$

- $\operatorname{Cov}\left(\hat{r} ; x_{2}\right)=0$ by properties of OLS $-x_{2}$ is "partialled out"
- \hat{r} is a "new version" of x_{1} that removes x_{2}
- In next slide we show that $\widehat{\beta}_{1}=\frac{\operatorname{Cov}(\widehat{r}, y)}{\operatorname{Var}(r)}$ or the regression of r on y
- In other words: $\widehat{\beta}_{1}$ measures the effect of x_{1} on y after removing their shared correlation with x_{2}
- Holding x_{2} constant, ceteris paribus

Partialling out

Vector notation, no $\widehat{\beta}_{0}$ for simplicity $\boldsymbol{y}=\widehat{\beta}_{1} \boldsymbol{x}_{1}+\widehat{\beta}_{2} \boldsymbol{x}_{2}+\widehat{\boldsymbol{u}}$ Stacking the explanatory vectors in columns gives $X=\left[\begin{array}{lll}\boldsymbol{x}_{\mathbf{1}} & \boldsymbol{x}_{\mathbf{2}}\end{array}\right]$
By matrix multiplication $X^{\prime} X=\left[\begin{array}{l}\boldsymbol{x}_{1}^{\prime} \\ \boldsymbol{x}_{2}^{\prime}\end{array}\right]\left[\begin{array}{ll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2}\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1} & \boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{2} \\ \boldsymbol{x}_{2}^{\prime} \boldsymbol{x}_{1} & \boldsymbol{x}_{2}^{\prime} \boldsymbol{x}_{2}\end{array}\right]$
Recall that $X^{\prime} X \widehat{\boldsymbol{\beta}}=X^{\prime} \boldsymbol{y} \Rightarrow$ "stacked" version of the OLS equations:

$$
\left[\begin{array}{ll}
\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1} & \boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{2} \\
\boldsymbol{x}_{2}^{\prime} \boldsymbol{x}_{1} & \boldsymbol{x}_{2}^{\prime} \boldsymbol{x}_{2}
\end{array}\right]\left[\begin{array}{l}
\widehat{\beta}_{1} \\
\widehat{\beta}_{2}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{x}_{1}^{\prime} \boldsymbol{y} \\
\boldsymbol{x}_{2}^{\prime} \boldsymbol{y}
\end{array}\right]
$$

Write out first row as: $\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1} \widehat{\beta}_{1}+\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{2} \widehat{\beta}_{2}=\boldsymbol{x}_{1}^{\prime} \boldsymbol{y}$

$$
\begin{aligned}
\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1} \widehat{\beta}_{1} & =\boldsymbol{x}_{1}^{\prime} \boldsymbol{y}-\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{2} \widehat{\beta}_{2} \\
\widehat{\beta}_{1} & =\left(\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1}\right)^{-1} \boldsymbol{x}_{1}^{\prime} \boldsymbol{y}-\left(\boldsymbol{x}_{1}^{\prime} \mathbf{x}_{1}\right)^{-1} \boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{2} \widehat{\beta}_{2} \\
& =\left(\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1}\right)^{-1} \boldsymbol{x}_{1}^{\prime}\left(\boldsymbol{y}-\boldsymbol{x}_{2} \widehat{\beta}_{2}\right) \\
& =\left(\boldsymbol{x}_{1}^{\prime} \boldsymbol{x}_{1}\right)^{-1} \boldsymbol{x}_{1}^{\prime}\left(\widehat{\boldsymbol{r}}_{1}\right)
\end{aligned}
$$

To get $\widehat{\beta}_{1}$, run a simple OLS on "partialled out" x_{1}; similar for $\widehat{\beta}_{2}$

Illustration

(C(Stellenbosch
university
UNIVERSITEETT

- How can we see the "partial effect interpretation" of the coefficient on education?
- reg lwage educ exp

source	SS	df	MS
Mode1	8688.99642	2	4344.49821
Residual	20724.4959	23433	.884414965
Total	29413.4923	23435	$\mathbf{1 . 2 5 5 1 0 9 5 5}$

Number of obs $=23436$
$F(2,23433)=4912.28$
Prob $>F=0.0000$
R-squared $=0.2954$
Adj R-squared $=0.2953$
Root MSE $=.94043$

7wagel	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
educ	$\mathbf{- 1 8 4 1 2 1}$	$\mathbf{- 0 0 1 8 6 9 3}$	$\mathbf{9 8 . 5 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{- 1 8 0 4 5 6 9}$	$\mathbf{- 1 8 7 7 8 5}$
exp	$\mathbf{- 0 2 6 2 8 5 2}$	$\mathbf{- 0 0 0 5 7 5}$	$\mathbf{4 5 . 7 1}$	$\mathbf{0 . 0 0 0}$	$\mathbf{- 0 2 5 1 5 8 1}$	$\mathbf{- 0 2 7 4 1 2 3}$
_cons	-.324087	$\mathbf{- 0 2 7 4 7 7 1}$	$\mathbf{- 1 1 . 7 9}$	$\mathbf{0 . 0 0 0}$	-.3779439	-.2702301

Remove shared effect of educ and exper

MUNIVESITHI
UNIVERSITEIT

- "Purify" the overlap from educ to get "educ only"
. reg educ \exp if $e($ sample) $=1$

source	$5 s$	$d f$	MS
Mode7	$\mathbf{1 1 4 2 2 0 . 3 9 6}$	$\mathbf{1}$	$\mathbf{1 1 4 2 2 0 . 3 9 6}$
Residua7	$\mathbf{2 5 3 0 9 4 . 2 3}$	$\mathbf{2 3 4 3 4}$	$\mathbf{1 0 . 8 0 0 3}$
Tota7	$\mathbf{3 6 7 3 1 4 . 6 2 6}$	23435	$\mathbf{1 5 . 6 7 3 7 6 2 6}$

| Number of obs | $=23436$ |
| :--- | :--- | ---: |
| F $(1,23434)$ | $=10575.67$ |
| Prob $>F$ | $=0.0000$ |
| R-squared | $=0.3110$ |
| Adj R-squared | $=0.3109$ |
| Root MSE | $=3.2864$ |

educ	Coef.	std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
exp	-.171537	$\mathbf{- 0 0 1 6 6 8}$	$-\mathbf{1 0 2 . 8 4}$	$\mathbf{0 . 0 0 0}$	$-\mathbf{- 1 7 4 8 0 6 4}$	$-\mathbf{- 1 6 8 2 6 7 6}$
_cons	$\mathbf{1 3 . 0 3 0 3 2}$	$\mathbf{- 0 4 4 4 3 4}$	$\mathbf{2 9 3 . 2 5}$	$\mathbf{0 . 0 0 0}$	$\mathbf{1 2 . 9 4 3 2 2}$	$\mathbf{1 3 . 1 1 7 4 1}$

- predict r, res
(290 missing values generated)
- An aside: if e(sample)==1 limits sample to same observations used in previous estimates
- An aside: after we have run estimates, we can store certain aspects of the model as variables with predict, in this case we create the variable r which is the res(iduals) from the regression

Effect after shared effect removed

Use "purified" educ (residuals from previous equation)

source	55	df		MS		Number of obs $=23436$ F $(1,23434)$ $=9651.03$ Prob $>F$ 0.0000 R-squared $=0.2917$ Adj R-squared $=0.2917$ Root MSE $=.94288$			
Mode1	8580.02727	$\begin{array}{r} 1 \\ 23434 \end{array}$	$\begin{aligned} & 8580.02727 \\ & .889027269 \end{aligned}$						
Residual	20833.465								
		234351.25510955							
Total	29413.4923								
7 wagel	coef.	std.	Err.	t	$P>\|t\|$	[95\% conf. Interval]			
r	. 184121	$.0018742$$.0061591$		98.24	0.000	$\begin{array}{lr}.1804474 & .1877945 \\ 1.93942 & 1.963565\end{array}$			
_cons	1.951492			316.85	0.000				

The simple regression with the "purified" educ, gives us almost identical estimates to the multiple regression that included both educ and exper

Comparison: Simple \& Multiple Regression(ssempase

$$
\begin{aligned}
\text { Simple Regression: } \tilde{y}_{i} & =\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1 i} \\
\text { Multiple Regression: } \widehat{y}_{i} & =\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1 i}+\widehat{\beta}_{2} x_{2 i} \\
\text { Can be compared by: } \tilde{\beta}_{1} & =\widehat{\beta}_{1}+\widehat{\beta}_{2} \widehat{\delta}
\end{aligned} \text { where } \widehat{\delta} \text { is the coefficient of regressing } x_{2} \text { on } x_{1} \text {. }
$$

- Multiple regression simplifies to simple regression only if
- $\operatorname{Cov}\left(x_{2} ; y\right)=0$ or $\widehat{\beta}_{2}=0$
- $\operatorname{Cov}\left(x_{2} ; x_{1}\right)=0$ or $\widehat{\delta}=0$
- We will use this formula to argue about bias in estimating models that have omitted variables

Illustration: simple vs multiple

reg lwage educ

source	S5	df	MS
Mode1	$\mathbf{6 8 4 1 . 0 2 1 8 2}$	$\mathbf{1}$	$\mathbf{6 8 4 1 . 0 2 1 8 2}$
Residua7	$\mathbf{2 2 5 7 2 . 4 7 0 5}$	23434	$\mathbf{- 9 6 3 2 3 5 9 1 6}$
Tota7	$\mathbf{2 9 4 1 3 . 4 9 2 3}$	23435	$\mathbf{1 . 2 5 5 1 0 9 5 5}$

| Number of obs | $=23436$ |
| ---: | :--- | ---: |
| $\mathrm{~F}(1,23434)$ | $=7102.12$ |
| Prob $>\mathrm{F}$ | $=0.0000$ |
| R-squared | $=0.2326$ |
| Adj R-squared | $=0.2325$ |
| Root MSE | $=.98145$ |

7 wagel	coef.	Std. Err.	t	$P>\|t\|$	[95\% conf.	Interval]
educ	. 1364713	. 0016194	84.27	0.000	. 1332972	. 1396454
_cons	. 7192268	. 0159658	45.05	0.000	. 6879327	. 7505208

reg 1wage educ \exp

Find $\widehat{\delta}$ and put it all together...

. reg exp educ if $e(\operatorname{samp} 1 e)==1$

source	ss	$d f$	MS
Mode7	$\mathbf{1 2 0 7 0 7 2 . 8 8}$	$\mathbf{1}$	$\mathbf{1 2 0 7 0 7 2 . 8 8}$
Residua7	$\mathbf{2 6 7 4 6 8 1 . 4 9}$	$\mathbf{2 3 4 3 4}$	$\mathbf{1 1 4 . 1 3 6 7 8 8}$
Total	$\mathbf{3 8 8 1 7 5 4 . 3 7}$	23435	$\mathbf{1 6 5 . 6 3 9 1 8 8}$

Number of obs $=23436$ $F(1,23434)=10575.67$
Prob $>F=0.0000$
R-squared $=0.3110$ Adj R-squared $=0.3109$ Root MSE $=10.683$

exp	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
educ	$\mathbf{- 1 . 8 1 2 7 9 1}$	$\mathbf{- 0 1 7 6 2 7 6}$	$\mathbf{- 1 0 2 . 8 4}$	$\mathbf{0 . 0 0 0}$	$\mathbf{- 1 . 8 4 7 3 4 2}$	$\mathbf{- 1 . 7 7 8 2 3 9}$
_cons	$\mathbf{3 9 . 6 9 2}$	$\mathbf{- 1 7 3 7 9 5}$	$\mathbf{2 2 8 . 3 8}$	$\mathbf{0 . 0 0 0}$	$\mathbf{3 9 . 3 5 1 3 5}$	$\mathbf{4 0 . 0 3 2 6 5}$

$$
\begin{aligned}
\tilde{\beta}_{1} & =\widehat{\beta}_{1}+\widehat{\beta}_{2} \widehat{\delta} \\
0.1364713 & =0.184121+0.0262852 \times-1.812791
\end{aligned}
$$

- Note differences due to rounding
- What does this tell us?

Expected Values \& Variances of $\widehat{\boldsymbol{\beta}}_{O L S}$

Up to now: used a "formula" to find out a relationship between x and y

- But the result depends on the one sample drawn from many possible samples that make up the population
- Different estimates of $\widehat{\beta}$, depending on our sample
- OLS estimates are therefore also random variables with a distribution
- Which have both expected values and a variances
- Objective:
- Show under which circumstances OLS is unbiased and efficient at estimating (unknown) population model
- For this we need assumptions
- SLR 1-4 (Simple Linear Regression)
- MLR 1-4 (Multiple Linear Regression)

OLS assumptions

- SLR1/MLR1 - Linearity in all $k+1$ parameters
- Linear relationship between (perhaps non-linearly transformed) variables ($\widehat{\beta}$ to the power 1)
- Must assume a population model: $y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+u$
- If the PRF were non-linear in parameters, OLS is not the right estimator
- SLR2/MLR2 - Random sampling ("the row problem")
- A random sample from the population for these random variables

$$
\left\{\left(x_{i j} ; y_{i}\right): i=1,2, \cdots n \text { and } j=1, \cdots, k\right\}
$$

- Sample size $=n$; number of variables $=k$
- PRF "holds" for each unit in the sample \Rightarrow add a sub-script:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i j}+\cdots+\beta_{k} x_{k i}+u_{i} \text { for } i=1, \cdots, n
$$

OLS assumptions

- SLR3 - Sample variation of explanatory variable
- Any explanatory variable $\left(x_{j}\right)$ may not be the same value for all observations (i)
- Otherwise impossible to compute OLS estimate $\widehat{\boldsymbol{\beta}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y}$
- $\operatorname{Var}(x) \neq 0 \Leftrightarrow\left(X^{\prime} X\right)$ cannot be inverted
- NO INFORMATION in variable to distinguish between units of analysis
- MLR3 - No perfect multicollinearity - cannot estimate if this fails
- No exact linear relationship among independent variables $\Leftrightarrow\left(X^{\prime} X\right)$ cannot be inverted
- Eg including expenditure in Rands and expenditure in Dollars in same model
- Eg including expenditure A, expenditure B and total expenditure ($A+B$)
- NO NEW INFORMATION by adding a variable
- Column vector $(\mathbf{1}$ in $X)$ to estimate $\widehat{\beta}_{0}$ is constant, so that $\operatorname{Var}\left(X_{j}\right) \neq 0$
- Need more observations than regressors
- Can you draw a unique straight line through one datapoint?

An example of perfect multicollinearity

- One variable can be expressed as an exact linear combination of other variables in the model
- Potential Experience = Age - Education - 6 by Mincer's (1974) definition and a possible PRF:

$$
\begin{aligned}
\log (\text { wage }) & =\beta_{0}+\beta_{1} \text { Exper }+\beta_{2} \text { Educ }+\beta_{3} \text { Age }+u \\
& =\beta_{0}+\beta_{1}(\text { Age }- \text { Educ }-6)+\beta_{2} \text { Educ }+\beta_{3} \text { Age }+u \\
& =\left(\beta_{0}-6 \beta_{1}\right)+\left(\beta_{1}+\beta_{3}\right) \text { Age }+\left(\beta_{2}-\beta_{1}\right) \text { Educ }+u \\
& =\alpha_{1}+\alpha_{2} \text { Age }+\alpha_{3} \text { Educ }+u
\end{aligned}
$$

- Possible to estimate α_{j}, but impossible to find unique solutions for β_{j}

Perfect Multicollinearity

- In technical terms, this is the same as saying that $\left(X^{\prime} X\right)$ cannot be inverted.
- X not of full column rank
- Cannot calculate $\widehat{\boldsymbol{\beta}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y}$ unless we drop a variable
- STATA simply drops a variable of its choice to "make it work": no need to test for perfect multicollinearity

Multicollinearity

- Are exper and exper ${ }^{2}$ perfectly multicollinear?
- No!
- Multicolinearity implies perfect linear relationships
- These variables are perfectly non-linearly correlated
- This has nothing to do with the error term

OLS assumptions

- SLR4/MLR4 - Zero Conditional Mean ("the column problem")
- $E(u \mid x)=0$
- Implies independence of u and x, as before

Does OLS have causal interpretation?

Is OLS unbiased/causal? $\left(E\left(\widehat{\beta}_{j} \mid x_{1}, x_{2}, \cdots, x_{k}\right)=\beta_{j}\right.$ for all $\left.j=1, \cdots, k\right)$

- Yes! IF ALL THE ASSUMPTIONS HOLD!
- SLR1: if your PRF is linear, OLS is a good way of estimating it \rightarrow if PRF is non-linear one obviously cannot fit straight lines through data
- Could introduce non-linear variables
- Or would have to move to non-linear estimators, which do not fit straight lines
- SLR2: random sampling solves the "row problem"
- SLR3: you cannot estimate OLS without variation
- SLR4: zero conditional mean solves the "column problem"
- The estimator is unbiased
- Specific estimates may not exactly reflect the population, if we use a sample that produces $\widehat{\beta}_{1}$ that is in the tail of the population distribution of all possible estimates
- But the average of ALL possible estimates using a representative sample will be the true population value under the assumptions

Distribution: $\widehat{\beta} 100$ SRFs same population

Theorem E. 1

Show that MLR4 gives unbiased/causal estimates of the population $\boldsymbol{\beta}$

- Substitute PRF into OLS estimator
(2) Take conditional expectations

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \boldsymbol{\beta}+\boldsymbol{u}) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} X \boldsymbol{\beta}+\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{u} \\
& =\boldsymbol{\beta}+\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{u} \\
\Rightarrow E(\widehat{\boldsymbol{\beta}} \mid X) & =\boldsymbol{\beta}+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\boldsymbol{u} \mid X) \\
& =\boldsymbol{\beta} \text { if and only if } E(\boldsymbol{u} \mid X)=\mathbf{0}
\end{aligned}
$$

Omitted Variable Bias: a simple case

$$
\begin{aligned}
& P R F: y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \\
& S R F: y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1}+\widehat{u}
\end{aligned}
$$

- Population model includes $x_{2}\left(\beta_{2} \neq 0\right)$, but when omitted (perhaps because there is no data), SRF restricted to $\widehat{\beta}_{2}=0$ in sample
- Violation of MLR4 - biased estimate of β_{1} - how large is the bias?
- Use what we know about relationship between simple and multiple regression

$$
\widehat{\beta}_{1}=\beta_{1}+\beta_{2} \delta
$$

where δ is the regression coefficient of x_{2} on x_{1}
Estimate $=$ " Truth ${ }^{\prime \prime}+$ bias

Direction of Bias

$$
\widehat{\beta}_{1}=\beta_{1}+\beta_{2} \delta
$$

- UPWARD BIAS: $\beta_{2} \delta>0$

$$
\left.\begin{array}{l}
\beta_{2}>0 ; \delta>0 \\
\beta_{2}<0 ; \delta<0
\end{array}\right\} \quad \beta_{1}>0: \widehat{\beta}_{1} \text { "too positive" } \beta_{1}<0: \widehat{\beta}_{1} \text { "not as negative" }
$$

- DOWNWARD BIAS: $\beta_{2} \delta<0$
$\left.\begin{array}{l}\beta_{2}>0 ; \delta<0 \\ \beta_{2}<0 ; \delta>0\end{array}\right\} \beta_{1}>0: \widehat{\beta}_{1}{ }^{\prime \prime}$ not as positive" $\beta_{1}<0: \widehat{\beta}_{1}$ "too negative"

TABLE 3.2

Summary of Bias in $\tilde{\beta}_{1}$ when x_{2} Is Omitted in Estimating Equation (3.40)

	$\operatorname{Corr}\left(x_{1}, x_{2}\right)>0$	$\operatorname{Corr}\left(x_{1}, x_{2}\right)<0$
$\beta_{2}>0$	Positive bias	Negative bias
$\beta_{2}<0$	Negative bias	Positive bias

Omitted Variable Bias : examples

$$
\begin{aligned}
& \text { PRF }: \log (\text { wage })=\beta_{0}+\beta_{1} \text { education }+\beta_{2} \text { ability }+u \\
& \text { SRF }: \log (\text { wage })=\widehat{\beta}_{0}+\widehat{\beta}_{1} \text { education }+\widehat{u}
\end{aligned}
$$

A classical example from the literature

- "Ability bias" in estimating $\beta_{1}>0$
- What direction is the bias likely to take?
- How are education and "ability" likely to be correlated? $(\delta>0)$
- How are wages and "ability" likely to be correlated? $\left(\beta_{2}>0\right)$
- NOTE: this is a theoretical argument, because we do not observe "ability" and we argue about unobserved population relationships
$\beta_{1}>0$ and $\beta_{2} \delta>0 \Rightarrow$ effect of educ "too positive" if "ability" omitted

Omitted Variable Bias : examples

$$
\begin{aligned}
& \text { PRF : crime }=\beta_{0}+\beta_{1} \text { expenditure }+\beta_{2} \text { past crime }+u \\
& \text { SRF : crime }=\widehat{\beta}_{0}+\widehat{\beta}_{1} \text { expenditure }+\widehat{u}
\end{aligned}
$$

Does expenditure on policing reduce crime?

- What direction is the bias likely to take?
- How are expenditure and past crime likely to be correlated? $(\delta>0)$
- How are current crime and past crime likely to be correlated? ($\beta_{2}>0$)
$\beta_{2} \delta>0$ and $\beta_{1}<0 \Rightarrow$ effect of expenditure is "not as negative" if we omit "past crime"

$$
\begin{aligned}
& \text { PRF : } y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \\
& S R F: y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1}+\widehat{\beta}_{2} x_{2}+\widehat{\beta}_{3} x_{3}+\widehat{u}
\end{aligned}
$$

- Omitting variables results in bias ("missing column"); does adding too many variables have similar effect?
- Short answer: no effect on bias; but risk of increasing standard errors
- x_{3} is not part of PRF (ie $\beta_{3}=0$ in population)
- $\widehat{\beta}_{3}$ will average to zero across all random samples
- But it is possible that we draw a sample where it is large and significant
- Overspecification is not serious for bias of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$
- Variance: will discuss later

Variance of OLS estimators

- Want to know "how far" estimates are from population value on average
- Variance of the estimator
- Standard error of the estimator
- Remember the estimator is also a random variable
- BUT we don't observe the variation
- In real life: only observe one estimate from one sample
- Can be calculated under assumptions MLR1-MLR4, but need to add another assumption to simplify the calculation

Variance of OLS estimators

Add assumption SLR5/MLR5: Homoskedasticity

- u has same variance given any values of all explanatory variables
- But also constant variance of \boldsymbol{y} across different values of \boldsymbol{x}

$$
\operatorname{Var}(u \mid \boldsymbol{x})=\operatorname{Var}(y \mid \boldsymbol{x})=\sigma^{2}
$$

- Allows us to calculate standard errors for $\widehat{\boldsymbol{\beta}}$ simply and efficiently, even if we do not observe the distribution of $\widehat{\boldsymbol{\beta}}$
- The assumption is NOT the same as $E(u \mid X)=0$
- MLR5 can easily be violated
- Eg at high education you have wider interests and greater variation in wages
- Low levels generally constant (low) wages

Homoskedastic errors

UNIVERSITY
IYUNIVESITHI
IUNIVEREITEIT

FIGURE 2.8
The simple regression model under homoskedasticity.

Copyright (c) 2009 South-Western/Cengage Learning

Heteroskedastic errors

FIGURE 2.9
$\operatorname{Var}(w a g e \mid e d u c)$ increasing with educ.
f(wageleduc)

Copyright (C) 2009 South-Western/Cengage Learning

Theorem E. 2

Homoskedasticity in matrix form.

- Diagonals: same variance for each observation; off-diags: no autocorrelation

$$
\operatorname{Var}(\boldsymbol{u} \mid X)=\left[\begin{array}{ccccc}
\sigma^{2} & 0 & \cdots & \cdots & 0 \\
0 & \sigma^{2} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & \sigma^{2}
\end{array}\right]=\ln \sigma^{2}
$$

Then: $\widehat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{u}$

$$
\begin{aligned}
\operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X) & =\operatorname{Var}\left(\boldsymbol{\beta}+\left(X^{\prime} X\right)^{-1} X^{\prime} X \mid \boldsymbol{u}\right) \\
& =\operatorname{Var}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{u} \mid X\right) \text { because } \boldsymbol{\beta} \text { is not random } \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Var}(\boldsymbol{u} \mid X) X\left(X^{\prime} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} I_{n} \sigma^{2} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Estimating the error variance

- We do not know σ^{2} because it is the variance of population errors u, which we do not observe
- However, an unbiased estimator for σ^{2} comes from sample residuals $S S R=\sum_{i=1}^{n} \widehat{u}_{i}^{2}$

$$
\widehat{\sigma}^{2}=s^{2}=\frac{S S R}{n-(k+1)}
$$

- Standard error of regression (square root of estimated variance)
- Also estimates the standard error of y once effect of x is removed

Standard Deviation vs Standard Error

- Standard deviation: if we knew σ^{2} estimated from u
- Standard error is an estimate of the standard deviation ($\widehat{\sigma}^{2}$ estimated from residuals \widehat{u})
- Because we do not have population errors
- It is therefore in itself a random variable, because it differs by sample

Gauss-Markov Assumptions

UNIVERSITY
IYUNIVESITHI
Int
IYUNIVESITHI
UNIVERSITEIT

- MLR1-MLR5 are the Gauss-Markov assumptions for cross section data with random sampling
- Change slightly for time series data
- All G-M assumptions are required to get OLS standard errors
- MLR1-MLR4: to establish whether $\widehat{\beta}_{j}$ is biased or not
- MLR1-4 plus MLR5 is required for variance calculations

Under MLR5:
$\operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X)=\sigma^{2}\left(X^{\prime} X\right)^{-1}$ with diagonal elements $\operatorname{Var}\left(\widehat{\beta}_{j}\right)=\frac{\sigma^{2}}{S S T_{x_{j}}\left(1-R_{j}^{2}\right)}$
where $S S T_{x_{j}}=\sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}$ is the variation in x_{j} and R_{j}^{2} is the fit of the regression of x_{j} on all other covariates Summarised in $\left(X^{\prime} X\right)^{-1}$

The components of OLS Variances

Under MLR5:

$$
\operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X)=\sigma^{2}\left(X^{\prime} X\right)^{-1} \text { with diagonal elements } \operatorname{Var}\left(\widehat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{x_{j}}\left(1-R_{j}^{2}\right)}
$$

3 changes determine whether OLS estimates are more/less efficient when adding/dropping a variable

- $\uparrow \sigma^{2}=\frac{S S R}{n-k-1} \Rightarrow \uparrow \operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X)$
- Cannot reduce SSR by $\uparrow n$, but can do so by $\uparrow k$ (number of variables)
$-\uparrow S S T_{X_{j}} \Rightarrow \downarrow \operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X)$
- Non-experimental analysis: cannot "introduce" variation in x_{j}, unless $\uparrow n$
- IMPERFECT multicollinearity $\uparrow R_{j}^{2} \Rightarrow \downarrow\left(1-R_{j}^{2}\right) \Rightarrow \uparrow \operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X)$
- $\left(X^{\prime} X\right)^{-1}$ captures both the variation within each $x_{j}\left(\right.$ which is $\left.S S T_{j}\right)$ and the variation between the explanatory variables $\left(R_{j}^{2}\right)$

OLS Variance: Imperfect Multicollinearity

- The strength of the linear relationship among the independent variables (R_{j}^{2})
- R_{j}^{2} is the R^{2} of $x_{j}=\widehat{\alpha}_{0}+\widehat{\alpha}_{1} x_{1}+\cdots+\widehat{\alpha}_{j-1} x_{j-1}+\widehat{\alpha}_{j+1} x_{j+1}+\cdots \widehat{\alpha}_{k} x_{k}+\widehat{u}$
- If $R_{j}^{2} \rightarrow 1$ (=perfect multicollinearity), $\operatorname{Var}\left(\widehat{\beta}_{j}\right) \rightarrow \infty$
- Same as not being able to estimate the coefficient at all (MLR3 fails)
- When R_{j}^{2} moves close to 1 (but $R_{j}^{2} \neq 1$), large $\operatorname{Var}\left(\widehat{\beta}_{j}\right)$, but does not violate the perfect multicollinearity assumption
- Strong interrelationships between x's make it difficult to distinguish which of the variables is "doing the work" in explaining y
- The uncertainty is reflected in higher standard errors

Multicollinearity and variances of estimatess

$\operatorname{Var}\left(\hat{\beta}_{1}\right)$ as a function of \boldsymbol{R}_{1}^{2}.

Solving multicollinearity?

- Drop variables?
- But omitted variable bias is the trade-off!
- Collect more data?
- Higher n increases variation in x, and can reduce correlation between x 's
- Detection:
- VIF $=\frac{1}{1-R_{j}^{2}}>10$ is "too high" - rule of thumb, but an "arbitrary threshold"
- If one variable is not highly correlated with other controls
- It's variance remains unaffected (low R_{j}^{2})

Variances in Misspecified Models

Trade-off between bias and variance

- If population model contains many collinear variables:
- Include all variables to avoid omitted variable bias
- Cannot solve this by increasing n
- But at the cost of high variance
- Can solve this by increasing $n\left(\uparrow S S T_{x_{j}} ; \downarrow \sigma^{2}\right)$
- Ideally: have a large sample size to mitigate against collinearity and specify all variables in the PRF in the sample model

Example

Use the famous auto.dta dataset on car prices in STATA Suppose for some reason the following PRF is important for a research question:

$$
\ln (\text { price })=\beta_{0}+\beta_{1} \text { length }+\beta_{2} \text { weight }+\beta_{3} \text { foreign }+u
$$

- correl ln_price length_m weight_k foreign
(obs=74)

ln_price	1.0000			
length_met~s	0.4589	1.0000		
reight_kg	0.5405	0.9460	1.0000	
foreign	0.0870	-0.5702	-0.5928	1.0000

- Length and weight are strongly correlated with each other, and also with price
- Foreign is weakly correlated with price, but strongly negatively related to length and weight

Example

Simple regressions

Source	SS	df	MS	Number of obs			74
Model	2.3640604	1	2.3640604	$\begin{aligned} & \mathrm{F}(1,72) \\ & \text { Prob }>\mathrm{F} \end{aligned}$			0.0000
Residual	8.85947268	72	. 123048232	R-squared			0.2106
Total	11.2235331	73	. 153747029	Adj R-squared			0.1997 .35078
In_price	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\%	nf	Interval]
length_metres	2.020501	. 4609645	4.38	0.000	1.1015		2.939417
_cons	7.121762	. 3489118	20.41	0.000	6.42621		7.817305

. reg 1 n _price weight_kg

Source	SS	df	MS	Number of obs	$=$	74
Model	3.27831499	1	3.27831499	$\mathrm{F}(1,72)$ Prob > F	=	29.71 0.0000
Residual	7.94521809	72	. 110350251	R -squared	$=$	0.2921
				Adj R-squared	=	0.2823
Total	11.2235331	73	. 153747029	Root MSE	=	. 33219

| In_price | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| weight_kg | .0005453 | .0001001 | 5.45 | 0.000 | .0003459 | .0007448 |
| _cons | 7.817322 | .1559096 | 50.14 | 0.000 | 7.506521 | 8.128122 |

- reg ln_price foreign

Example

	ln_price	(2) ln_price	(3) ln_price	ln_price	(5) ln_price	(6) ln_price
length_met*s	$\begin{aligned} & 2.02050 * * \\ & (0.46096) \end{aligned}$	$\begin{aligned} & 0.00055 * * \\ & (0.00010) \end{aligned}$			$\begin{aligned} & 3.31760 * \\ & (0.49639) \end{aligned}$	$\begin{array}{r} -1.94830 \\ (1.06693) \end{array}$
weight_kg				$(0.00092 * * *$		$\begin{aligned} & 0.00134 * * * \\ & (0.00025) \end{aligned}$
foreign			0.07415	$0.53527 * *$	$0.44027 * *$	$0.52982 * *$
			(0.10003)	(0.08441)	(0.09607)	(0.08311)
_cons	$\begin{aligned} & 7.12176 * * \\ & (0.34891) \end{aligned}$	$\begin{aligned} & 7.81732 * * \\ & (0.15591) \end{aligned}$	8.61859***	$7.09086 * *$	6.01581**	$7.92509 * *$
			(0.05454)	(0.16989)	(0.39181)	(0.48647)
r2	0.21063	0.29209	0.00757	0.54804	0.39082	0.56859
N	74	74	74	74	74	74
ss	8.85947	7.94522	11.13853	5.07258	6.83712	4.84193

Standard errors in parentheses

* $\mathrm{p}<0.05$, * * $\mathrm{p}<0.01$, * * $\mathrm{p}<0.001$
- (1), (2) and (3) confirm correlations, but notably se $\left(\widehat{\beta}_{\text {foreign }}\right)>\widehat{\beta}_{\text {foreign }}$ (noise $>$ signal)
- (1) and (5): SSR $\downarrow, S S T_{\text {length }}$ and $S S T_{\text {foreign }}$ unchanged
- but se $\left(\widehat{\beta}_{\text {length }}\right) \uparrow$ because of strong collinearity with foreign
- and $\operatorname{se}\left(\widehat{\beta}_{\text {foreign }}\right) \downarrow$ so that effect of SSR dominates collinearity with length

Example

	ln_price	ln_price	(3) ln_price	ln_price	(5) ln_price	(6) 1n_price
length_metws	$\begin{aligned} & 2.02050 * * \\ & (0.46096) \end{aligned}$				$\begin{aligned} & 3.31760 * * \\ & (0.49639) \end{aligned}$	$\begin{array}{r} -1.94830 \\ (1.06693) \end{array}$
weight_kg		$\begin{aligned} & 0.00055 * * * \\ & (0.00010) \end{aligned}$		$\begin{aligned} & 0.00092 * * * \\ & (0.00010) \end{aligned}$		$\begin{aligned} & 0.00134 * * * \\ & (0.00025) \end{aligned}$
foreign			$\begin{array}{r} 0.07415 \\ (0.10003) \end{array}$	$\begin{aligned} & 0.53527 * * \\ & (0.08441) \end{aligned}$	$\begin{aligned} & 0.44027 * 2 \\ & (0.09607) \end{aligned}$	$\begin{aligned} & 0.52982 * * * \\ & (0.08311) \end{aligned}$
_cons	7.12176***	7.81732**	8.61859**	7.09086**	6.01581***	$7.92509 * *=$
	(0.34891)	(0.15591)	(0.05454)	(0.16989)	(0.39181)	(0.48647)
工2	0.21063	0.29209	0.00757	0.54804	0.39082	0.56859
N	74	74	74	74	74	74
351	8.85947	7.94522	11.13853	5.07258	6.83712	4.84193

Standard errors in parentheses

* $\mathrm{p}<0.05$, * * $\mathrm{p}<0.01$, * * $\mathrm{p}<0.001$
- (2) and (4): SSR $\downarrow, S S T_{\text {weight }}$ and $S S T_{\text {foreign }}$ unchanged
- similar to before
(2) and (4): $\beta_{\text {foreign }}>0, \delta_{\text {foreign;weight }}<0$, so that simpler regression was downward biased
- Controlling for foreign $\uparrow \widehat{\beta}_{\text {weight }}$

Example

(< Stellenbosch
university
IMUNIVESITHI
fowerd topsther
Fonve syr phambil
IYUNIVESITHI
UNIVERSITEIT

	ln_price	ln_price	ln_price	ln_price	ln_price	(6) 1n_price
length_met~s	$\begin{aligned} & 2.02050 * * \\ & (0.46096) \end{aligned}$				$\begin{aligned} & 3.31760 * 4 \\ & (0.49639) \end{aligned}$	$\begin{array}{r} -1.94830 \\ (1.06693) \end{array}$
weight_kg		$\begin{aligned} & 0.00055 * * \\ & (0.00010) \end{aligned}$		$(0.00092 * *$		$\begin{aligned} & 0.00134 * * * \\ & (0.00025) \end{aligned}$
foreign			$\begin{array}{r} 0.07415 \\ (0.10003) \end{array}$	$0.53527 * *$	$0.44027 *=$	$\begin{aligned} & 0.52982 * * \\ & (0.08311) \end{aligned}$
_cons	7.12176**	7.81732**	8.61859**	$7.09086 * *$	$6.01581 * *$	$7.92509 * *$
	(0.34891)	(0.15591)	(0.05454)	(0.16989)	(0.39181)	(0.48647)
x2	0.21063	0.29209	0.00757	0.54804	0.39082	0.56859
N	74	74	74	74	74	74
351	6.85947	7.94522	11.13853	5.07258	6.83712	4.84193

Standard errors in parentheses

* $\mathrm{p}<0.05$, * * $\mathrm{p}<0.01$, * * $\mathrm{p}<0.001$
- (5) and (6): SSR \downarrow : $S S T_{\text {length, }}, S S T_{\text {weight }}$ and $S S T_{\text {foreign }}$ unchanged
- But the very high collinearity between weight and length make the latter standard error grow very large
- (5) and (6): $\beta_{\text {length }}>0, \delta_{\text {foreign;length }}>0$, so that simpler regression was perhaps upward biased
- Controlling for foreign $\downarrow \widehat{\beta}_{\text {weight: }}$ it a large negative value
- But does it make sense? (It is not statistically significant - next chapter)
. estat vif

Variable	VIF	$1 /$ VIF
weight_kg	9.92	0.100839
length_met~s	9.53	0.104932
foreign	1.54	0.647716
Mean VIF	7.00	

- In the final regression we detect high levels of multicollinearity
- What if weight and length matter in the PRF, but we cannot distinguish their effects in a small sample of $n=74$ with high collinearity?

QUESTION

What would happen if we added a variable that was not correlated to any other x 's?

- To coefficients?
© To standard errors?
- Why use OLS? - it is unbiased under MLR1-4
- But there are other unbiased linear estimators for $\boldsymbol{\beta}$
- OLS is BLUE - Best Linear Unbiased Estimator
- "Best" - it has the smallest variance (most efficient) if we assume MLR5
- Gauss-Markov Theorem
- Among all linear unbiased estimators, the OLS estimator has smallest variance - given that MLR1-MLR5 hold
- Homoskedasticity got us "best"
- Heteroskedasticity doesn't affect bias of coefficients, but biases the standard errors that we calculated because we do not observe all samples
- We no longer have the "best" estimator if MLR 5 fails

