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Conditional expectation function

I Di�erent distributions of

Y = wage at x = educ = 1 · · ·20
→ distributions around CEF

• Deterministic vs statistical
I How to estimate the slope of the CEF?

β̂1 =
∂E(Y|X)
∂x

...it quanti�es the relationship between
Y = wage and X = educ
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De�nition of the regression model

“Explain y = wage in terms of x = educ”

I Functional form: “Linear Regression”

y = β0 + β1xmain + u

• β0: y − intercept - “mean wage of individuals with 0 education”

I CONDITIONALmean

• β1 = ∆wage
∆educ : slope of a straight line - ∆wage for one year ∆educ

• u are unobservables - social networks, soft skills, ability, motivation, etc

I Ceteris paribus???

I Linearity?

• In parameters, not in variables (more later)

• A marginal change in x (say, education) has the same impact on y (say,
wage), regardless of the level of x

I Realistic? We will see how to deal with this later
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When is β1 a ceteris paribus e�ect?

I Hold other observables (xother) & unobservables (ε) constant as xmain
changes

• Think of u = βotherxother + ε⇒ y = β0 + β1xmain + βotherxother + ε

I Split u into "information" and "randomness" that is uncorrelated with xmain

• If xother is part of u (OR: xother also determines y) AND correlates with xmain,
cannot “hold it constant” unless somehow “taken out of u”

I POPULATION REGRESSION FUNCTION: β1 is "true" (not necessarily
known) relationship if... all relevant x’s included (xmain); or only
"randomness" (ε) is left in u, so that Cov(u; xmain) = Cov(ε; xmain) = 0

y = β0 + β1xmain + u

∆y = β1∆xmain + ∆u

∆y
∆xmain

=
∆β0

∆xmain
+ β1

∆xmain

∆xmain
+

∆u
∆xmain

∆y
∆xmain

= 0 + β1 +
∆u

∆xmain
⇒ β1 =

∆y
∆xmain

−
∆u

∆xmain

β1 =
∆y
∆x

only if
∆u
∆x

= 0 or
∆xother
∆xmain

=
∆ε

∆xmain
= 0
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State this more formally

I If there is an intercept, it can be shown that E(u) = 0... always

I Now what must we assume to obtain “ceteris paribus” estimates?

• No correlation between x and u

• Generalise this to non-linear relationships with conditional expectations:
E(u|x) = E(u)

I Mean (non-linear and linear) INDEPENDENCE

I Average of unobservables is the same, regardless of values of x

I Concretely: for regression to have ceteris paribus or causal interpretation,
average motivation/ability/access to education (absorbed in u because it is
not measured/unobserved) must be the same for people with low and high
levels of education (xmain)→ likely not a good assumption→ estimate of β1
does not necessarily have causal interpretation

I How could unobservables in�uence our estimate relative to the true
("unbiased"/causal/population) value?

• Often simpli�ed as: E(u|x) = 0 because E(u) = 0

I Zero conditional mean assumption
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POPULATION regression function

y, x and u are random variables

I They have a population distribution

• A “real” set of values that is partially re�ected in our sample

• E(y|x): how the average value of y changes with x in the population

• In the population, the β are not random

I They have no distribution, because one true (unbiased/causal/ceteris
paribus) population value for them

• “DATA GENERATING PROCESS”: the conditional expectation function is
the systematic/deterministic part of PRF, separated from the random
component

y = β0 + β1x + u

E(y|x) = E(β0 + β1x + u|x)
= E(β0|x) + E(β1x|x) + E(u|x)

= β0 + β1x + 0

because if the PRF is fully speci�ed, there is no remaining relationship
between u and x
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Model with 2 independent variables

Suppose the Population Regression Function includes experience
according to theory

wage = β0 + β1education+ β2experience+ u

I Taking experience out of the error term, and assume this theory is
“enough” to characterise the DGP (ie u is now random and unrelated to
all the x’s)

• β1 is ceteris paribus e�ect of education on wage holding experience and u
�xed

• β2 is ceteris paribus e�ect of experience on wage holding education and u
�xed

I But now we have a better estimate of it; it is a causal estimate IF we
have fully speci�ed the PRF, meaning that E(u|educ; exper) = 0

I Had we left experience out

wage = β̃0 + β̃1education+ ũ where ũ contains experience

• If education and experience are correlated, E(educ|ũ) 6= 0 so that β̃1 6= β1
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Model with k independent variables

If PRF must contain more variables (k of them)

y = β0 + β1x1 + β2x2 · · ·+ βkxk + u

The zero conditional mean assumption extends to:

E(u|x1, x2, · · · , xk) = E(u|x) = 0

I Average of unobservables is zero regardless of each value of each xj,
for example

• Average motivation (contained in u) must be zero at educ = 0 and
educ = 1 and... educ = 20

• AND average motivation must be zero at exp = 0 and exp = 1 and...
exp = 40

• AND similar for all other variables in the PRF

I Or simply: independence of all the variables and the unobservable
population error
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Sample Regression Function (SRF)

I Hardly ever have data on the whole population

I Twomain data reasons for biased estimation (among others)

1 Not all variables collected (as before): a “column problem”

2 Do not sample whole population: a “row problem”

I Draw representative SAMPLE from population

I Draw inferences about population based on sample

I Di�erent sub-samples of data from the same population, estimate of the PRF
(= SRF) is di�erent in each case

I Estimate because know true PRF without full information

I β̂ is therefore also stochastic - a random variable⇒ β̂ has a distribution

I (remember the distributions around the slope of the CEF?)
(NOTE: the "hat" emphasises that this is an estimate from a sample)
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Full information

I Imagine for a moment that educ and age tell us everything about why
people get paid what they do...

I Code simulates a fake “population” level dataset that re�ects the
following PRF:

wage = β0 + β1educ+ β2exper + u

where β0 = 10, β1 = 0.5, β2 = 0.1

STATA CODE
clear

set seed 1234
set obs 60000000
gen educ = int(rnormal()*1.4 + 12)
gen age = int(rnormal()*4+40)
gen exper = max(age - educ - 6 -int(rnormal()*0.1),0)
gen u = 0.1*rnormal()
gen wage = 10 + 0.5*educ +0.1*exper +u
drop age
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Full information

I Population of N = 60million

I "True" population regression function is

wage = β0 + β1education+ β2exper + u

I With full information could estimate β1 from the PRF without a
problem using Ordinary Least Squares (OLS) - more later
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Don’t observe randomness

I Population of N = 60million

I Estimate Sample Regression Function
ŵage = β̂0 + β̂1education+ β̂2exper

I Only omitting random information (u) gives β̂1 close to population β1
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+Don’t observe exper (part of PRF)

I Population of N = 60million

I Estimate Sample Regression Function

ŵage = β̂0 + β̂1education

I Omitting non-random information (exper) gives β̂1 not close to true β1
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+take one sample of n = 1000

I Sample of �rst n = 1000 from population of N = 60million

I Estimate Sample Regression Function

ŵage = β̂0 + β̂1education

I Omitting the > 59million observations gives di�erent β̂1 to before
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+take 2nd sample of n = 1000

I Sample of last n = 1000 from population of N = 60million

I Estimate Sample Regression Function

ŵage = β̂0 + β̂1education

I Omitting the > 59million observations gives a di�erent β̂1 to before (but
with good sample design, it may not be that far away)

Dieter von Fintel Intro Metrics: Chap. 2 & 3 14-02-2024 16 / 77



+take 3rd random sample of n = 1000

I Random sample of n = 1000 from population of N = 60million

I Estimate Sample Regression Function

ŵage = β̂0 + β̂1education

I Omitting the > 59million observations gives a di�erent β̂1 to before (but
with good sample design, it may not be that far away)
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Sample Regression Functions

In summary

I We usually have column problems (omitted variables) that give us
β̂ 6= β

I We usually observe one set of rows that deviates from the population

• Omitting rows can add to the column problem if the sample is
non-randomly collected

• Omitting rows is less problematic with random sampling

• If we were to observe a di�erent set of rows in our sample, we would get
a di�erent β̂ (even ignoring the column problems)

I Our sample regression function therefore has stochastic estimates of β̂ with
a distribution

Dieter von Fintel Intro Metrics: Chap. 2 & 3 14-02-2024 18 / 77



SRF – an illustration using census

I “Population” - note: we are ignoring column problems for now
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2x Random samples: 0.05% observations
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“Distribution” of β̂1 from 100 di�erent SRFs

I Sample 0.5% from population (larger sample size n)

I Sample 0.05% from population (smaller sample size n)

• distribution is wider in smaller samples

• In Chapter 4: use distribution to assess the validity of our estimates
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Deriving OLS Estimates

I We do not know population parameters or the distribution

I Need to �nd an mathematical estimators to approximate these from a
sample

I Ordinary Least Squares Estimator

• Carl Friedrich Gauss, University of Göttingen

I An o�cial partner to our Economics Department

• Approach is to �nd the best �tting line that minimises the sum of squared
residuals (

∑N
i=1 û

2
i )
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Obtaining OLS estimates

I Take the following SRF

yi = β̂0 + β̂1x1i + β̂2x2i · · ·+ β̂kxki + ûi = ŷi + ûi
SAMP. resid. = ûi = yi − ŷi

= yi −
(
β̂0 + β̂1x1i + β̂2x2i · · ·+ β̂kxki

)
POP. unobs. = ui = yi −

(
β0 + β1x1i + β2x2i · · ·+ βkxki + · · ·+ β(k+j)x(k+j)i

)
I SAMPLE residual not the same as POPULATION unobservable, unless

can control for all xj : û 6= u

I Minimise sum of squared residuals using optimisation techniques

I Get the �tted model to be as close to the data as possible

min
n∑
i=1

û2i = min
n∑
i=1

[
ŷi −

(
β̂0 + β̂1x1i + β̂2x2i · · ·+ β̂kxki

)]2
I Minimisation with multivariate algebra in Appendix E and SunLearn
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Derivation of OLS estimates

Express the OLS model in matrix and vector notation:

y = Xβ̂ + û = β̂0 + β̂1x1 + · · ·+ β̂kxk + û

where y︸︷︷︸
n×1

=


y1
y2
...
yn

 is the dependent variable vector

X︸︷︷︸
n×(k+1)

=


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
...

1 xn1 xn2 · · · xnk

 is the matrix of explanatory variables,
the �rst col is to estimate the intercept,

β̂︸︷︷︸
(k+1)×1

=


β̂0
β̂1
...
β̂k

 is the coe�cient vector and û︸︷︷︸
n×1

=


û1
û2
...
ûn

 is the residual vector
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Derivation

⇒ û = y − Xβ̂

û′û =
(
y − Xβ̂

)′ (
y − Xβ̂

)
= û1 × û1 + û2 × û2 + · · · ûn × ûn =

n∑
i=1

û2i

= y′y︸︷︷︸
(1×n)(n×1)

− β̂′X′y︸ ︷︷ ︸
(1×k+1)(k+1×n)(n×1)

− y′Xβ̂︸ ︷︷ ︸
(1×n)(n×k+1)(k+1×1)

+ β̂′X′Xβ̂︸ ︷︷ ︸
(1×k+1)(k+1×n)(n×k+1)(k+1×1)

= y′y − 2β̂′X′y + β̂′X′Xβ̂

∂û′û

∂β̂′
= −2X′y + 2X′Xβ̂ = 0

X′Xβ̂ = X′y

β̂ =
(
X′X

)−1 X′y
IF (X′X) is invertible: X has full column rank (no perfect linear relationships)

SIMPLE REGRESSION: β̂1 =
Cov(y;x1)
Var(x1)

⇒ Var(x1) 6= 0

MULTIPLE REGRESSION: typical element of β̂ is β̂j =
Cov(y;x̃j)
Var(x̃j)

⇒ Var(xj) 6= 0, where x̃j is

“partialled out” (later)
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If Var(xj) = 0

I No estimate if all values of xj are the same (denominator of β̂1)

Copyright c© 2009 South-Western/Cengage Learning

Dieter von Fintel Intro Metrics: Chap. 2 & 3 14-02-2024 26 / 77



Fitted Values and Residuals

yi = β̂0 + β̂1xi + ûi = ŷi + ûi
ûi = yi − ŷi

NOTE: with the hat they are predictions and residuals (not the population
error term)
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Properties of OLS on Any Sample of Data

I OLS is an estimator (a mathematical rule) that uses a sample to �nd
estimates for E(y|x) - not reaching the population estimate exactly

I OLS estimates di�er for each sample used: How well does it perform
on the speci�c sample available to researcher?

I ŝalary = regression line

I û = residuals

• Negative: function overpredicts

• Positive: function underpredicts
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Properties of OLS

I Algebraic

• Residuals sum to zero or average to zero

I By implication, the average of actual y values equals the average of �tted
values

n∑
i=1

û2i =
1

n

n∑
i=1

û2i = 0

• Sample covariance between residuals and variables is zero

I Does not imply Cov(u; x) = 0 in population

I Cov(û; x) = 0 in sample does not that imply satisfying E(u|x) = 0 in the
population

I OLS estimation imposes this assumption on the sample; we get it “wrong” (ie
we get bias) if it does not also hold in the population

Cov(û; xj) =
1
n

n∑
i=1

xijûi = 0 for j = 1 · · · k

• (x; y) = (x1, x2, · · · , xk, y) is always on the regression line
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Properties of OLS

I Total sum of squares (SST)

• The total variation in y

I Explained sum of squares (SSE)

• The variation in y explained by the model

I Residual sum of squares (SSR)

• The variation in y that is not explained, and contained in residuals

SST = SSE + SSR
n∑
i=1

(yi − y)2 =
n∑
i=1

(
ŷi − y

)2
+

n∑
i=1

(
yi − ŷi

)2
σ2y =

SST
n− 1

= variance of y
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Goodness of �t

I Small residuals: model �ts the speci�c sample data well

• Small SSRmeans a “better” sample �t

• Could get a di�erent R2 in a di�erent sample

I R2 is a measure of sample �t

• Not how well the data �ts the population

• Not how well the model �ts the population

• Ratio of explained variance to total variance in sample

SST = SSE + SSR

R2 =
SSE
SST

= 1− SSR
SST

where 0 ≤ R2 ≤ 1

• Adding more variables: SSR ↓⇒ R2 ↑ as soon as you add more (even
irrelevant) variables to the model

• Also, the squared correlation coe�cient between y and ŷ

I Intuitively, how related is the prediction from the model to the observed data
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R2 from our SRF experiment

I Small probability of drawing sample with low or high R2
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Goodness of �t

I We tend to obtain low R2 in cross section analyses

I Does this mean we have a bad equation?

• No, we just have a lot that is unexplained by the factor we have included
in the model

• Wemay still have the correct relationship between x and y if
zero-conditional mean assumption holds.

I Be cautious to think a high R2 means you have a good model

• More later
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“Partialling Out” interpretation of OLS

I Consider 2 variable case

yi = β̂0 + β̂1x1i + β̂2x2i + ûi

I Suppose we have a second regression which removes the overlap
between x1 and x2

x1i = α̂0 + α̂1x2i + r̂i

• Cov(̂r; x2) = 0 by properties of OLS - x2 is “partialled out”

• r̂ is a “new version” of x1 that removes x2

I In next slide we show that β̂1 =
Cov(̂r,y)
Var(̂r) or the regression of r on y

I In other words: β̂1 measures the e�ect of x1 on y after removing their
shared correlation with x2

• Holding x2 constant, ceteris paribus
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Partialling out

Vector notation, no β̂0 for simplicity y = β̂1x1 + β̂2x2 + û Stacking the
explanatory vectors in columns gives X = [x1 x2]

By matrix multiplication X ′X =

[
x′1
x′2

] [
x1 x2

]
=

[
x′1x1 x′1x2
x′2x1 x′2x2

]
Recall that X ′Xβ̂ = X ′y ⇒ “stacked” version of the OLS equations:[

x′1x1 x′1x2
x′2x1 x′2x2

] [
β̂1
β̂2

]
=

[
x′1y
x′2y

]
Write out �rst row as: x′1x1β̂1 + x′1x2β̂2 = x′1y

x′1x1β̂1 = x′1y − x′1x2β̂2

β̂1 = (x′1x1)
−1 x′1y − (x′1x1)

−1 x′1x2β̂2

= (x′1x1)
−1 x′1

(
y − x2β̂2

)
= (x′1x1)

−1 x′1
(̂
r1
)

To get β̂1, run a simple OLS on “partialled out” x1; similar for β̂2
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Illustration

I How can we see the “partial e�ect interpretation” of the coe�cient on
education?
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Remove shared e�ect of educ and exper

I “Purify” the overlap from educ to get “educ only”

I An aside: if e(sample)==1 limits sample to same observations used in
previous estimates

I An aside: after we have run estimates, we can store certain aspects of
the model as variables with predict, in this case we create the
variable r which is the res(iduals) from the regression
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E�ect after shared e�ect removed

Use “puri�ed” educ (residuals from previous equation)

The simple regression with the “puri�ed” educ, gives us almost identical
estimates to themultiple regression that included both educ and
exper
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Comparison: Simple & Multiple Regression

Simple Regression: ỹi = β̃0 + β̃1x1i

Multiple Regression: ŷi = β̂0 + β̂1x1i + β̂2x2i

Can be compared by: β̃1 = β̂1 + β̂2δ̂

where δ̂ is the coe�cient of regressing x2 on x1

I Multiple regression simpli�es to simple regression only if

• Cov(x2; y) = 0 or β̂2 = 0

• Cov(x2; x1) = 0 or δ̂ = 0

I We will use this formula to argue about bias in estimating models that
have omitted variables
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Illustration: simple vs multiple
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Find δ̂ and put it all together...

β̃1 = β̂1 + β̂2δ̂

0.1364713 = 0.184121+ 0.0262852×−1.812791

I Note di�erences due to rounding

I What does this tell us?
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Expected Values & Variances of β̂OLS

Up to now: used a “formula” to �nd out a relationship between x and y

I But the result depends on the one sample drawn from many possible
samples that make up the population

I Di�erent estimates of β̂, depending on our sample

• OLS estimates are therefore also random variables with a distribution

I Which have both expected values and a variances

• Objective:

I Show under which circumstances OLS is unbiased and e�cient at estimating
(unknown) population model

I For this we need assumptions

I SLR 1-4 (Simple Linear Regression)

I MLR 1-4 (Multiple Linear Regression)
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OLS assumptions

I SLR1/MLR1 – Linearity in all k+ 1 parameters

• Linear relationship between (perhaps non-linearly transformed) variables
(β̂ to the power 1)

• Must assume a population model: y = β0 + β1x1 + · · ·+ βkxk + u

• If the PRF were non-linear in parameters, OLS is not the right estimator

I SLR2/MLR2 – Random sampling ("the row problem")

• A random sample from the population for these random variables
{(xij; yi) : i = 1,2, · · · n and j = 1, · · · , k}

• Sample size = n; number of variables = k

• PRF “holds” for each unit in the sample⇒ add a sub-script:
yi = β0 + β1x1i + · · ·+ βkxki + ui for i = 1, · · · , n
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OLS assumptions

I SLR3 – Sample variation of explanatory variable

• Any explanatory variable (xj) may not be the same value for all
observations (i)

• Otherwise impossible to compute OLS estimate β̂ = (X ′X)
−1X ′y

• Var(x) 6= 0⇔ (X ′X) cannot be inverted

• NO INFORMATION in variable to distinguish between units of analysis

I MLR3 - No perfectmulticollinearity - cannot estimate if this fails

• No exact linear relationship among independent variables⇔ (X ′X)
cannot be inverted

I Eg including expenditure in Rands and expenditure in Dollars in same model

I Eg including expenditure A, expenditure B and total expenditure (A+B)

I NO NEW INFORMATION by adding a variable

• Column vector (1 in X ) to estimate β̂0 is constant, so that Var(xj) 6= 0

• Need more observations than regressors

I Can you draw a unique straight line through one datapoint?
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An example of perfect multicollinearity

I One variable can be expressed as an exact linear combination of other
variables in the model

I Potential Experience = Age− Education− 6
by Mincer’s (1974) de�nition and a possible PRF:

log(wage) = β0 + β1Exper + β2Educ+ β3Age+ u

= β0 + β1(Age− Educ− 6) + β2Educ+ β3Age+ u

= (β0 − 6β1) + (β1 + β3)Age+ (β2 − β1)Educ+ u

= α1 + α2Age+ α3Educ+ u

I Possible to estimate αj, but impossible to �nd unique solutions for βj
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Perfect Multicollinearity

I In technical terms, this is the same as saying that (X ′X) cannot be
inverted.

• X not of full column rank

• Cannot calculate β̂ = (X ′X)
−1 X ′y unless we drop a variable

I STATA simply drops a variable of its choice to “make it work”: no need
to test for perfect multicollinearity
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Multicollinearity

I Are exper and exper2 perfectly multicollinear?

• No!

• Multicolinearity implies perfect linear relationships

• These variables are perfectly non-linearly correlated

I This has nothing to do with the error term
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OLS assumptions

I SLR4/MLR4 – Zero Conditional Mean ("the column problem")

• E(u|x) = 0

• Implies independence of u and x, as before
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Does OLS have causal interpretation?

Is OLS unbiased/causal? (E(β̂j|x1, x2, · · · , xk) = βj for all j = 1, · · · , k)
I Yes! IF ALL THE ASSUMPTIONS HOLD!

• SLR1: if your PRF is linear, OLS is a good way of estimating it→ if PRF is
non-linear one obviously cannot �t straight lines through data

I Could introduce non-linear variables

I Or would have to move to non-linear estimators, which do not �t straight lines

• SLR2: random sampling solves the "row problem"

• SLR3: you cannot estimate OLS without variation

• SLR4: zero conditional mean solves the "column problem"

• The estimator is unbiased

I Speci�c estimatesmay not exactly re�ect the population, if we use a sample
that produces β̂1 that is in the tail of the population distribution of all possible
estimates

I But the average of ALL possible estimates using a representative sample will
be the true population value under the assumptions
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Distribution: β̂ 100 SRFs same population
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Theorem E.1

Show that MLR4 gives unbiased/causal estimates of the population β

1 Substitute PRF into OLS estimator

2 Take conditional expectations

β̂ = (X ′X)−1 X ′y

= (X ′X)−1 X ′(Xβ + u)

= (X ′X)−1 X ′Xβ + (X ′X)−1 X ′u

= β + (X ′X)−1 X ′u

⇒ E(β̂|X) = β + (X ′X)−1 X ′E(u|X)
= β if and only if E(u|X) = 0
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Omitted Variable Bias: a simple case

PRF : y = β0 + β1x1 + β2x2 + u

SRF : y = β̂0 + β̂1x1 + û

I Population model includes x2 (β2 6= 0), but when omitted (perhaps
because there is no data), SRF restricted to β̂2 = 0 in sample

I Violation of MLR4 - biased estimate of β1 - how large is the bias?

• Use what we know about relationship between simple and multiple
regression

β̂1 = β1 + β2δ

where δ is the regression coe�cient of x2 on x1
Estimate =′′ Truth′′ + bias
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Direction of Bias

β̂1 = β1 + β2δ

I UPWARD BIAS: β2δ > 0

β2 > 0; δ > 0
β2 < 0; δ < 0

}
β1 > 0 : β̂1“too positive” β1 < 0 : β̂1“not as negative”

I DOWNWARD BIAS: β2δ < 0

β2 > 0; δ < 0
β2 < 0; δ > 0

}
β1 > 0 : β̂1“not as positive” β1 < 0 : β̂1“too negative”
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Omitted Variable Bias : examples

PRF : log(wage) = β0 + β1education+ β2ability + u

SRF : log(wage) = β̂0 + β̂1education+ û

A classical example from the literature

I “Ability bias” in estimating β1 > 0

I What direction is the bias likely to take?

• How are education and “ability” likely to be correlated? (δ > 0)

• How are wages and “ability” likely to be correlated? (β2 > 0)

I NOTE: this is a theoretical argument, because we do not observe “ability” and
we argue about unobserved population relationships

β1 > 0 and β2δ > 0⇒ e�ect of educ “too positive” if “ability” omitted
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Omitted Variable Bias : examples

PRF : crime = β0 + β1expenditure+ β2past crime+ u

SRF : crime = β̂0 + β̂1expenditure+ û

Does expenditure on policing reduce crime?

I What direction is the bias likely to take?

• How are expenditure and past crime likely to be correlated? (δ > 0)

• How are current crime and past crime likely to be correlated? (β2 > 0)

β2δ > 0 and β1 < 0⇒ e�ect of expenditure is “not as negative” if we omit
“past crime”
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Including irrelevant variables in a model

PRF : y = β0 + β1x1 + β2x2 + u

SRF : y = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + û

I Omitting variables results in bias (“missing column”); does adding too
many variables have similar e�ect?

• Short answer: no e�ect on bias; but risk of increasing standard errors

I x3 is not part of PRF (ie β3 = 0 in population)

• β̂3 will average to zero across all random samples

I But it is possible that we draw a sample where it is large and signi�cant

• Overspeci�cation is not serious for bias of β̂1 and β̂2

• Variance: will discuss later
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Variance of OLS estimators

I Want to know “how far” estimates are from population value on
average

• Variance of the estimator

• Standard error of the estimator

I Remember the estimator is also a random variable

• BUT we don’t observe the variation

I In real life: only observe one estimate from one sample

• Can be calculated under assumptions MLR1-MLR4, but need to add
another assumption to simplify the calculation
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Variance of OLS estimators

Add assumption SLR5/MLR5: Homoskedasticity

I u has same variance given any values of all explanatory variables

• But also constant variance of y across di�erent values of x

Var(u|x) = Var(y|x) = σ2

I Allows us to calculate standard errors for β̂ simply and e�ciently,
even if we do not observe the distribution of β̂

I The assumption is NOT the same as E(u|X) = 0

I MLR5 can easily be violated

• Eg at high education you have wider interests and greater variation in
wages

I Low levels generally constant (low) wages
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Homoskedastic errors
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Heteroskedastic errors
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Theorem E.2

Homoskedasticity in matrix form.

I Diagonals: same variance for each observation; o�-diags: no
autocorrelation

Var(u|X) =



σ2 0 · · · · · · 0
0 σ2 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 σ2


= Inσ2

Then: β̂ = β +
(
X′X

)−1 X′u
Var

(
β̂|X

)
= Var

(
β +

(
X′X

)−1 X′X|u)
= Var

((
X′X

)−1 X′u|X) because β is not random

=
(
X′X

)−1 X′Var(u|X)X
(
X′X

)−1
=
(
X′X

)−1 X′Inσ2X (X′X)−1
= σ2

(
X′X

)−1 X′X (X′X)−1
= σ2

(
X′X

)−1
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Estimating the error variance

I We do not know σ2 because it is the variance of population errors u,
which we do not observe

I However, an unbiased estimator for σ2 comes from sample residuals
SSR =

∑n
i=1 û

2
i

σ̂2 = s2 =
SSR

n− (k+ 1)

• Standard error of regression (square root of estimated variance)

• Also estimates the standard error of y once e�ect of x is removed
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Standard Deviation vs Standard Error

I Standard deviation: if we knew σ2 estimated from u

I Standard error is an estimate of the standard deviation (σ̂2 estimated
from residuals û)

• Because we do not have population errors

• It is therefore in itself a random variable, because it di�ers by sample
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Gauss-Markov Assumptions

I MLR1-MLR5 are the Gauss-Markov assumptions for cross section
data with random sampling

• Change slightly for time series data

I All G-M assumptions are required to get OLS standard errors

• MLR1-MLR4: to establish whether β̂j is biased or not

• MLR1-4 plus MLR5 is required for variance calculations

UnderMLR5:

Var
(
β̂|X

)
= σ2 (X ′X)−1 with diagonal elements Var(β̂j) = σ2

SSTxj(1−R
2
j )

where SSTxj =
∑n

i=1 (xij − xj)
2 is the variation in xj

and R2
j is the �t of the regression of xj on all other covariates

Summarised in (X ′X)−1
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The components of OLS Variances

UnderMLR5:

Var
(
β̂|X

)
= σ2 (X ′X)−1 with diagonal elements Var(β̂j) = σ2

SSTxj(1−R
2
j )

3 changes determine whether OLS estimates are more/less e�cient when
adding/dropping a variable

I ↑ σ2 = SSR
n−k−1 ⇒↑ Var

(
β̂|X

)
• Cannot reduce SSR by ↑ n, but can do so by ↑ k (number of variables)

I ↑ SSTxj ⇒↓ Var
(
β̂|X

)
• Non-experimental analysis: cannot “introduce” variation in xj , unless ↑ n

I IMPERFECTmulticollinearity ↑ R2
j ⇒↓ (1− R2

j )⇒↑ Var
(
β̂|X

)
• (X ′X)

−1 captures both the variation within each xj (which is SSTj) and the
variation between the explanatory variables (R2

j )
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OLS Variance: Imperfect Multicollinearity

I The strength of the linear relationship among the independent
variables (R2

j )

• R2
j is the R2 of xj = α̂0 + α̂1x1 + · · ·+ α̂j−1xj−1 + α̂j+1xj+1 + · · · α̂kxk + û

• If R2
j → 1 (=perfectmulticollinearity), Var(β̂j)→∞

I Same as not being able to estimate the coe�cient at all (MLR3 fails)

• When R2
j moves close to 1 (but R2

j 6= 1), large Var(β̂j), but does not violate
the perfect multicollinearity assumption

• Strong interrelationships between x’s make it di�cult to distinguish which
of the variables is “doing the work” in explaining y

I The uncertainty is re�ected in higher standard errors
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Multicollinearity and variances of estimates
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Solving multicollinearity?

I Drop variables?

• But omitted variable bias is the trade-o�!

I Collect more data?

• Higher n increases variation in x, and can reduce correlation between x’s

I Detection:

• VIF = 1
1−R2j

> 10 is “too high” - rule of thumb, but an “arbitrary threshold”

I If one variable is not highly correlated with other controls

• It’s variance remains una�ected (low R2
j )
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Variances in Misspeci�ed Models

Trade-o� between bias and variance

I If population model contains many collinear variables:

• Include all variables to avoid omitted variable bias

I Cannot solve this by increasing n

• But at the cost of high variance

I Can solve this by increasing n (↑ SSTxj ; ↓ σ2)

I Ideally: have a large sample size to mitigate against collinearity and
specify all variables in the PRF in the sample model
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Example

Use the famous auto.dta dataset on car prices in STATA
Suppose for some reason the following PRF is important for a research
question:

ln(price) = β0 + β1length+ β2weight+ β3foreign+ u

I Length and weight are strongly correlated with each other, and also
with price

I Foreign is weakly correlated with price, but strongly negatively related
to length and weight

Dieter von Fintel Intro Metrics: Chap. 2 & 3 14-02-2024 70 / 77



Example

Simple regressions
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Example

I (1), (2) and (3) con�rm correlations, but notably se(β̂foreign) > β̂foreign (noise > signal)

I (1) and (5): SSR ↓, SSTlength and SSTforeign unchanged

• but se(β̂length) ↑ because of strong collinearity with foreign

• and se(β̂foreign) ↓ so that e�ect of SSR dominates collinearity with length
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Example

I (2) and (4): SSR ↓, SSTweight and SSTforeign unchanged

• similar to before

I (2) and (4): βforeign > 0, δforeign;weight < 0, so that simpler regression was downward
biased

• Controlling for foreign ↑ β̂weight
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Example

I (5) and (6): SSR ↓; SSTlength, SSTweight and SSTforeign unchanged
• But the very high collinearity between weight and lengthmake the latter
standard error grow very large

I (5) and (6): βlength > 0, δforeign;length > 0, so that simpler regression was perhaps upward
biased
• Controlling for foreign ↓ β̂weight : it a large negative value
• But does it make sense? (It is not statistically signi�cant - next chapter)
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VIFs

I In the �nal regression we detect high levels of multicollinearity

I What if weight and length matter in the PRF, but we cannot distinguish
their e�ects in a small sample of n = 74 with high collinearity?
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QUESTION

What would happen if we added a
variable that was not correlated to

any other x’s?
1 To coe�cients?

2 To standard errors?
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Gauss-Markov Theorem

I Why use OLS? - it is unbiased underMLR1-4

• But there are other unbiased linear estimators for β

I OLS is BLUE - Best Linear Unbiased Estimator

• “Best” - it has the smallest variance (most e�cient) if we assumeMLR5

I Gauss-Markov Theorem

• Among all linear unbiased estimators, the OLS estimator has smallest
variance - given that MLR1-MLR5 hold

I Homoskedasticity got us “best”

• Heteroskedasticity doesn’t a�ect bias of coe�cients, but biases the
standard errors that we calculated because we do not observe all
samples

• We no longer have the “best” estimator if MLR 5 fails
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