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Overview

1 Distributional assumptions about β̂

2 Testing hypotheses about a single population parameter: The
T-test

One-sided alternatives

Two-sided alternatives

3 Con�dence intervals

4 Testing hypotheses about a single linear combination of
parameters

5 Testing multiple linear restrictions – the F test

6 Testing General Linear Restrictions
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Sampling Distributions of OLS Estimators

β̂j is estimated using one possible sample of many from the population:
they are therefore random variables

I Statistical theory: estimates unbiased E(β̂j|X) = βj underMLR 1-4

I AddingMLR5 gives a formula for how "spread" out the distributions of
the random variables are: Var(β̂|X) = (X ′X)−1 σ2

• Only one of many possible samples observed (=no variation), need
formula

I Still don’t know about the shape of the distribution

• All we know: distribution of β̂j depends on distribution of û

I AddMLR.6 – NORMALITY

• Errors normally distributed u ∼ N(0;σ2) & independent of X
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Focus on distribution of u

I Recall

β̂ = β + (X ′X)−1 X ′u

= β +
n∑
i=1

(xix′i )
−1xiui

• ...or a function of a sum containing ui

• A linear combination of ui ∼ N is normally distributed

• Therefore β̂ is normally distributed if we assume ui ∼ N

I Put it all together:

• From MLR1-4: E(β̂j|X) = βj

• From MLR5: we get formula for Var(β̂j|X)

• Now add MLR6: β̂j ∼ N(βj;Var(βj))
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MLR 6

u ∼ N(0;σ2)

⇒ y|x ∼ N(β0 + β1x1 + · · ·+ βkxk;σ2) if MLR1-6 hold
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Normality: valid or “convenient”?

I Generally valid by the Central Limit Theorem

• Residuals represent unmodelled variables

• Sum of many independently distributed variables→ normal distribution
when n is “large”

• But we need to establish empirically whether this holds (S→ 0;K → 3)

• Sometimes transformations of variables can introduce normality

I log(Price), log(Income)

I But also convenient

• Now β̂j are also normally distributed by properties of normal distribution
(linear combination of normal residuals are normally distributed)

• Normal distribution de�ned completely by its mean and variance

• Normality allows us to construct other test statistics (F, T and χ2) to test a
variety of hypotheses
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T-test

I Slight adjustment: if u ∼ Normal⇒ β̂j has a t-distribution when we
estimate σ̂2 = SSR

n−k−1 which is contained in se(β̂j) - this is usually the
case

T =
β̂j − βj
se(β̂j)

I Normality is only a valid assumption if population σ2 is known

• t-distribution is �atter and wider to account for additional uncertainty that
comes from estimating σ̂2

• As n grows large, a t distribution tends towards a normal distribution (it
grows �atter and more symmetric)

I Normal is a relevant and frequent special case of the t distribution
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T Test

I Hypotheses about population parameters

• Question: is it possible that a sample estimate could have been drawn
from a population with hypothesised properties?

PRF : log(wage) = β0 + β1educ+ β2exp+ β3tenure+ u

• Does tenure in�uence wages once we have controlled for education and
experience? OR is β3 = 0 in the population?
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Hypothesis testing

I Hypothesise a population value of estimate (β∗)

H0 : βj = β∗

Ha : βj 6= β∗

• How “close” is estimated value to the hypothesised population value?

I Too far – reject the possibility

I Close enough – do not reject

• How close is “close” – depends on distribution of estimate

I Particular case:

• Does x have an in�uence on y once other variables are controlled for?

H0 : βj = 0

Ha : βj 6= 0

Insert hypothesised value:T =
β̂j − 0

se(β̂j)
∼ tn−(k+1)
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What are we saying?

I We assume (hypothesise) a speci�c population distribution

• Then we “place” the estimate in the context of the hypothesised
distribution

• If the hypothesised value is “too far” from the mean of this distribution,
then we reject this hypothesised population value

I Gives us a sense of what probability that estimate could be drawn from
speci�c population

• For instance, a large T value will be far from 0 in absolute value

I Because β̂ is large and se(β̂) is low

• We then reject that the estimate is 0 (ie there IS a relationship)

• Statistically SIGNIFICANT

I Note that we do not “accept” a hypothesis if it is “too close”

• We simply “do not reject”
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Testing one-sided alternatives

H0 : βj = 0
Ha : βj > 0

I Choose signi�cance level (α)

• The probability of rejecting H0 when it could be true

I Usually 1%, 5%, 10%

• Acknowledging that we could be making mistakes in the process

I Establish “su�ciently” large value of β̂j where we conclude that it is
“su�ciently” likely to be larger than zero

• CRITICAL value

• 95th percentile of theoretical t-distribution if 5% level of signi�cance

I Rejection rule

• If calculated T is larger than critical t, reject H0 in favour of Ha
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Critical t depends on. . .

I Degrees of freedom (see tables)

• n− k− 1

I Level of signi�cance (α) chosen

• “Statistically (in)signi�cant”

I Whether it is a one or two-tailed test

• Always draw a picture and make sure how you split the distribution

• Will see later. . .
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Rejection rule
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Testing one-sided alternatives

H0 : βj = 0

Ha : βj < 0

I Very similar for testing whether estimate is negative

I Except now our rejection region is in bottom tail of distribution

• And critical t is just the negative of the previous

• Now if calculated value is smaller than the critical value, reject H0 in
favour of Ha

I Same as taking the absolute value of the critical value and rejecting if
calculated T is larger

I Symmetry of T-distribution
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Rejection rule
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Illustration

I Test whether H0 : βeduc = 0 or Ha : βeduc > 0 at a 5% level of
signi�cance

T =
β̂educ − 0

se(β̂educ)
=

0.1816909− 0
0.0019129

= 94.981

d.f . = n− (k+ 1) = 23436− (3+ 1) = 23432

t23432;0.95 = 1.645

T > t⇒ Reject H0 ⇒ Statistically signi�cant at a 100-95%=5% level
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Illustration

I Test whether H0 : βexper2 = 0 or Ha : βexper2 < 0 at a 1% level of
signi�cance

T =
β̂educ − 0

se(β̂educ)
=
−0.0002069− 0

0.0000351
= −5.8946⇒ |T| = 5.8646

d.f . = n− (k+ 1) = 23436− (3+ 1) = 23432

t23432;0.99 = 2.326

|T| > t⇒ Reject H0 ⇒ Statistically signi�cant
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Two-sided alternatives

H0 : βj = 0

Ha : βj 6=0

I This is the usual format used in hypothesis testing

• Do not specify whether the e�ect is positive or negative a priori

• We say it could be larger OR smaller than 0
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Rejection rules

“Split” the critical area: 0.025+ 0.025 = 0.05⇒ 5% level of signi�cance

I Reject if T is above the upper critical value or below lower critical value

I Equivalent to checking whether |T| is larger than upper critical value
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Illustration

I Test whether H0 : βexperience = 0 or Ha : βexperience 6= 0

T =
β̂exp − 0

se(β̂exp)
=

0.0365736− 0
0.0018376

= 19.90

d.f . = n− (k+ 1) = 23436− (3+ 1) = 23432

t23432;0.995 = 2.576 (where 0.995 = 0.005+ 0.99)

|T| > t⇒ Reject H0 ⇒ Statistically signi�cant at 1% level
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Smaller sample?

I Test for βnumeracy?

T = −0.08
t19;0.975 = 2.093

|T| < t⇒ Do not reject H0 ⇒ Statistically insigni�cant at 5% level
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More generally

I For instance, test that an elasticity (from a log-log model) equals aj = 1

H0 : βj = aj

T =
β̂j − aj

se(β̂j)
∼ tn−(k+1)

T =
estimate− hypothesised

se
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Hypothesis Testing – Some Tacit Knowledge

I p-value

• Exact level of signi�cance P(|T| > |t|)

• The lowest level of signi�cance at which one would reject H0

• Allows us to see what the conclusion would be at all levels of signi�cance

• Example: p-value = 0.04 (ie probability above calculated T-value is 0.04)

I Draw a graph for yourself

I At 1% that T value is not in rejection region

I 3.9% do not reject

I 4% reject

I 4.1% reject

I 5% reject

I 10% reject

• Small p-values lead to rejection of H0
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p-values for di�erent alternatives

I Two-sided: Add area in both tails

I One-sided

• Take only area in relevant tail according to Ha

• Packages compute two-sided alternative

• But for one-sided just divide by 2
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Hypothesis Testing – Some Tacit Knowledge

I “Rejecting” and “Non-rejecting”

• Never “accept” a hypothesis

• As evident from con�dence intervals (later), a range of possibilities could
be the “true” population value

I Which do we therefore “accept”?

• Formulating null and alternative

I Theory guides

I Testing statistical properties (eg T-test of signi�cance)
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Hypothesis Testing – Some Tacit Knowledge

Choosing α

I Usually 1%, 5% and 10%

I “conventional” levels of statistical signi�cance

• But not grounded on any statistical basis

α = P(Type I Error) = P(Reject true hypothesis) = “false positive”

P(Type II Error) = P(Not Rejecting false hypothesis) = “false negative”

• Trade-o�!

• Power of Test = 1 – P(Type II Error)

I In practise: just choose α, but realise that you sacri�ce power
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Hypothesis Testing – Some Tacit Knowledge

Economic vs Statistical Signi�cance

I McCloskey

I An estimate can “mean something” in economic magnitude even if it
marginally fails a statistical test

I But, if two di�erent values are statistically plausible, they may have
varying practical implications

• Eg small di�erences in MPC could have large impacts on consumption
multiplier

I Often have statistically signi�cant coe�cient with no economically
signi�cant magnitude

• Or it has the wrong sign

• Must still go through some introspection of model

I Ie don’t blindly apply statistical criteria ONLY
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Con�dence Intervals

I Find a con�dence interval for the population β

P(−tα/2 ≤ T ≤ tα/2) = 1− α
...
...

P
(
β̂j − tα/2se(β̂j) ≤ βj ≤ β̂j − tα/2se(β̂j)

)
= 1− α

(1− α)% con�dence interval = β̂j ± tα/2se(β̂j)

• High Standard Error = Broad Con�dence Interval

• Level of signi�cence (α) = 5%

I Con�dence interval of 95%
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Con�dence Intervals - semantics

I If α = 5%, is there a 95% chance that the true β lies within that speci�c
interval? NO!

• If 100 di�erent samples were taken

• . . .would obtain 100 di�erent estimates β̂

• . . . and 100 di�erent con�dence intervals

• 95 out of the 100 times the true population β would fall inside the
calculated con�dence interval (subject to MLR1-6 holding!)

I So there is still a 5% chance that a speci�c con�dence interval does NOT
contain the true β

I Remember Type I error?

• Can use to test hypothesis

I H0 : β = 0

I If 0 lies within con�dence interval, we do not reject at α%
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Illustration

I Calculate a 95% and a 99% con�dence interval for βeducation

• 0.1816909± 1.96× 0.0019129 = [0.17794162;0.18544018]

• 0.1816909± 2.576× 0.0019129 = [0.17676327;0.18661853]

• Which is wider? Why?

I We get a “range” of possible population values

• The reason why we never “accept” a hypothesis!
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Hypothesis Testing – Some Tacit Knowledge

Con�dence Intervals vs Test of Signi�cance

I First gives range ofmagnitudes, while second only o�ers a binary
conclusion

• If test of signi�cance is rejected, then what is a plausible value for the
population value?

I However, in the second approach we can use p-values, while for
con�dence intervals we need to specify α upfront

• Both approaches are therefore �exible in one sense or the other

I NB NOTE

• ALL hypothesis tests depend onMLR1-6

I If normality of errors is violated, β̂ are not t-distributed

I If homoskedasticity is violated, standard errors are biased, and so are the
calculated T-stats

I If MLR 1-4 are violated, limited value for making conclusions about the
population from biased estimates and inferences
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Tests about more than one parameter

I Does an additional year at school have the same value as an additional
year at university?

log(wage) = β0 + β1school+ β2university + u

H0 :β1 = β2 ⇔ β1 − β2 = 0

Ha :β1 < β2 ⇔ β1 − β2 < 0

T =
(β̂1 − β̂2)− 0

se(β̂1 − β̂2)

I Similar approach to before, except se is not so easy to get from our
normal regression output
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Standard error?

Var(β̂1 − β̂2) = Var(β̂1) + Var(β̂2)−2Cov(β̂1; β̂2)

se(β̂1 − β̂2) =
√
Var(β̂1 − β̂2)

I But we need to dig to �nd Cov(β̂1; β̂2)

I Another way is to estimate a similar but informative model, using
resulting coe�cient and standard errors with a T test

log(wage) = β0 + β1school+ β2university + u

Let θ = β1 − β2, the parameter we are interested in testing

⇒ β1 = θ + β2

⇒ log(wage) = β0 + (θ + β2)school+ β2university + u

= β0 + θschool+ β2(school+ university) + u
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Using LFS
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LFS

I Is the di�erence statistically signi�cant?
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OR. . . a lot easier
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Testing Exclusion Restrictions

I Joint hypothesis: entire subsection of model is equal to zero

log(wage) = β0+β1school+ β2university + β3experience+ β4tenure+ u

BEFORE JOB MARKET AFTER JOB MARKET

I Test whether learning acquired during the job market has no e�ect on
wages

I JOINT hypothesis

H0 :β3 = β4 = 0

Ha :H0 not true

I If one of these is di�erent from zero, then the alternative will often hold
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Exclusion Restrictions

UR:log(wage) = β0 + β1school+ β2university + β3experience+ β4tenure+ u

Impose hypothesised restriction by setting β3 = β4 = 0

R:log(wage) = β0 + β1school+ β2university + u

I SSR ↓ when k ↑ (or moving from restricted (R) to understricted (UR))

• But is the relative drop in SSR “large enough” to suggest that the variables
are relevant to the model?

I SSR of unrestricted model vs restricted model

• More parameters vs fewer parameters

• Lower SSR vs higher SSR

• Higher R2 vs lower R2
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Testing exclusion restrictions

I F = the relative increase in SSR by excluding group of variables (scaled
by d.f.)

F =
(SSRR − SSRUR) /q
SSRUR/ (n− k− 1)

∼ Fq;n−k−1

• F always > 0, therefore only one-sided test

• q = [n− (k+ 1− q)]− [n− k− 1]= number of restrictions = numerator d.f.

• n− k− 1 = denominator d.f.

I If F is “large”: “substantial” enough increase in SSR to reject H0

• In other words F larger than a critical value from the F theoretical
distribution
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H0 :βexp = βtenure = 0

F =
(SSRR − SSRUR) /q
SSRUR/ (n− k− 1)

=
(14642.8058− 12554.1738) /2

12554.1738/19729
= 1641.1522

F2;19729;0.99 = 4.61

F > F2;19729;0.99 ⇒ reject H0 at a 1% level of signi�cance
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Relationship between F and t stats

t2n−k−1 = F1;n−k−1

I Using F-stat approach to exclude one variable at a time gives same
conclusions as individual T-tests

I But T can test two-sided hypotheses

I F test is good at testing jointly

• If joint test shows that whole group is insigni�cant, it may still be true that
one variable does have some important explanatory power
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R2 form of F-stat

F =

(
R2
UR − R2

R

)
/q(

1− R2
UR

)
/ (n− k− 1)

I Note the order of the R2’s, to ensure that F > 0

I Interpretation: has relative R2 increased signi�cantly after adding
variables to unrestricted model?
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H0 :βexp = βtenure = 0

F =

(
R2
UR − R2

R

)
/q(

1− R2
UR

)
/ (n− k− 1)

=
(0.4075− 0.3089) /2
(1− 0.4075) /19729

= 1641.15

F2;19729;0.99 = 4.61

F > F2;19729;0.99 ⇒ reject H0 at a 1% level of signi�cance
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Or more simply in STATA
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Computing p-values for F tests

I p-value = P(F > Fcritical)

I Better to use, because size of F-stat is dependent on d.f.

I Still same interpretation as other p-values

• Small p-value is evidence against H0
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F statistic for overall signi�cance of regression

I Are all the regressors jointly (in)signi�cant?

• Routinely reported by regression packages

H0 : β1 = β2 = · · · = βk = 0

• Same approach as before, with k restrictions

• The only di�erence is that the restricted model just has an intercept
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Testing General Linear Restrictions

I Test whether coe�cients are speci�c non-zero values

• Rewrite models to do this

• Cannot always use the R2 version of the test statistic

I Particularly if we have a di�erent dependent variable after rewriting the
model

H0 : βexperience = 0.01 and βuniversity = 3× βschool

Unrestricted (UR):

log(wage) = β0 + β1school+ β2university + β3experience+ β4tenure+ u

Restricted (R):

log(wage) = β0+β1school+3β1university+0.01×experience+β4tenure+u
⇒ log(wage)−0.01×exper = β0+β1(school+3×university)+β4tenure+u
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F =
(SSRR − SSRUR) /q
SSRUR/ (n− k− 1)

=
(12561.3759− 12554.1738) /2

12554.1738/19729
= 5.66

> F2;19729;0.99 = 4.61⇒ Reject H0
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General Restrictions in STATA. . .
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What to report?

I Coe�cients

• With economic interpretation

I Elasticity, semi-elasticity, unit changes

• Add signi�cance stars for easy reading: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

I Standard errors (usually in parentheses below coe�cients)

• Help us compute con�dence intervals, T-stats and p-values

I R2 and n

I In Stata

• ssc install esttab

• help esttab
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